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Abstract

This work deals with spectral mapping theorems for neutron transport semigroups
in unbounded geometries and L1 setting. The mathematical analysis relies on harmonic
analysis of certain measure valued mappings related to Dyson-Phillips expansions and on
some functional analytic results on the critical spectrum [2, 8].

1 Introduction

The investigation of spectral mapping theorems for neutron transport semigroups
(
et(T+K)

)
t≥0

in unbounded geometries was initiated recently by the authors in the context of Lp spaces
with 1 < p < ∞ [7], where T and K represent respectively the streaming and the collision
operators. The mathematical analysis is based upon two ingredients:
(a) Some functional analytic results on perturbation theory of the critical spectrum of C0-
semigroups [1, 2, 8].
(b) The norm continuity of

0 ≤ t 7→ et(T+K) − etT ,

i.e. in the operator norm topology. The proof of (b) is based on Fourier integral analysis
of et(T+K) − etT in the case p = 2 and on interpolation arguments. The present paper is
devoted to the limiting case p = 1 which is not covered by [7] and which turns out to be the
physical case for neutron transport. Besides the use of the properties of the critical spectrum
of perturbed semigroups [2], our mathematical analysis relies on different tools. Moreover, we
obtain very precise results which are different from those given in [7]. Before explaining the
content of this paper, it is useful to recall some facts on the critical spectrum of C0-semigroups
[1, 2, 8]. Let X be a Banach space and τ = (U(t))t≥0 be a strongly continuous semigroup on
X. We consider the Banach space X̃ := `∞(X) of all bounded sequences in X endowed with
the norm

‖x̃‖ = sup
n∈N

‖xn‖
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where x̃ = (xn)n∈N . We extend the semigroup (U(t))t≥0 to X̃ and obtain a new semigroup

τ̃ =
(
Ũ(t)

)
t≥0

defined by

Ũ(t)x̃ := (U(t)xn)n∈N for x̃ = (xn)n∈N .

Let X̃τ be the subspace of strong continuity of τ̃

X̃τ :=
{

x̃ ∈ X̃; lim
h↓0

∥∥Ũ(h)x̃− x̃
∥∥ = 0

}
.

This subspace is closed and
(
Ũ(t)

)
t≥0

-invariant. On the quotient space X̂ := X̃/X̃τ , the

semigroup
(
Ũ(t)

)
t≥0

induces a quotient semigroup τ̂ =
(
Û(t)

)
t≥0

given by

Û(t)x̂ = Ũ(t)x̃ + X̃τ for x̂ = x̃ + X̃τ .

The critical spectrum of U(t) is then defined as

σcrit(U(t)) = σ(Û(t))

while its critical spectral radius is defined as

rcrit(U(t)) := r(Û(t)).

Moreover, the critical growth bound is defined as

ωcrit(U(·)) := ω0(Û(·))

where ω0 is the usual growth bound (type). We have:
Theorem 1.1. [8] Let (U(t))t≥0 be a strongly continuous semigroup on a Banach space X
with generator T . Then:

(a) σcrit(U(t)) ⊂ σ(U(t)),

(b) rcrit(U(t)) = eωcrit(U(·))t,

(c) σ(U(t))\ {0} = etσ(T ) ∪σcrit(U(t))\ {0} ,

(d) ω0(U(·)) = max {s(T ), ωcrit(U(·))} .

Consider now the perturbed semigroup (V (t))t≥0 generated by T + K where K is a bounded
operator:

V (t) =
∞∑

0

Uj(t),

where

U0(t) = U(t), Uj+1(t) =

t∫

0

U0(t− s)KUj(s)ds (j ≥ 0). (1.1)

The following theorem provides a sufficient condition for the stability of critical growth bound.
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Theorem 1.2. [2] Let (U(t))t≥0 be a C0-semigroup with generator T and let (V (t))t≥0 be
the C0-semigroup generated by T + K. If for some k ∈ N

0 < t 7→ Rk(t) :=
∞∑

i=k

Ui(t)

is norm (right) continuous, then

ωcrit(V (·)) = ωcrit(U(·)).

The stability of critical spectrum is the subject of the next theorem.

Theorem 1.3. [2] Let (U(t))t≥0 be a C0-semigroup with generator T and let (V (t))t≥0 be
the C0-semigroup generated by T + K. If for some t0 ≥ 0

t0 ≤ t 7→ R1(t) := V (t)− U(t)

is norm (right) continuous, then

σcrit(V (t)) = σcrit(U(t)) (t ≥ t0).

We give a sufficient condition for recognizing the critical spectrum. We first recall that the
approximate spectrum of T is defined by

σap(T ) := {λ ∈ C; ∃(xn)n ⊂ D(T ), ‖xn‖ = 1, ‖Txn − λxn‖ → 0 as n →∞} .

Theorem 1.4. [1] Let (U(t))t≥0 be a C0-semigroup with generator T. Let (λn)n ⊂ σap(T )
be such that lim

n→∞ |Imλn| = ∞ and lim
n→∞etλn = µ. Then µ ∈ σcrit(U(t)).

We now present the neutron transport semigroup. Let Ω ⊂ RN be an open set and let
µ be a positive Radon measure on RN with support V. We refer to V as the velocity space.
The streaming semigroup is given by

U(t) : L1(Ω× V ) 3 ϕ 7→ e
−

∫ t

0
σ(x− sv, v)ds

ϕ(x− tv, v)χ{t<τ(x,v)} ∈ L1(Ω× V ),

where τ(x, v) = inf {s > 0; x− sv /∈ Ω} and σ(·, ·) ∈ L∞(Ω × V ) is the collision frequency.
Here Ω× V is endowed with the product measure dx⊗ dµ(v). We denote by T the generator
of (U(t))t≥0. The collision operator is the (partial) integral operator

K : L1(Ω× V ) 3 ϕ 7→
∫

V

k(x, v, v′)ϕ(x, v′)dµ(v′),

where the scattering kernel k(·, ·, ·) satisfies the estimate
∫

V

|k(·, v, ·)|dµ(v) ∈ L∞(Ω× V )

ensuring the boundedness of K in L1(Ω × V ). The neutron transport semigroup is the C0-
semigroup generated by T + K. For all the sequel, the collision operator is assumed to be
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compact ”with respect to velocities”, where the compactness is ”collective” with respect to
the space variable. More precisely:
(H1) The family

{∫

V

k(x, v, v′)ϕ(v′)dµ(v′); x ∈ Ω, ϕ ∈ L1(V ), ‖ϕ‖L1(V ) ≤ 1
}

is relatively compact in L1(V ).
(H2) For each ψ ∈ L∞(V ), the family

{∫

V

k(x, v′, v)ψ(v′)dµ(v′); x ∈ Ω
}

is relatively compact in L∞(V ).
We note that under (H1) and (H2), K can be approximated in the norm operator topology
of L(L1(Ω× V )) by collision operators with separable kernels:

∑

i∈I

αi(x)fi(v)gi(v′), (1.2)

where αi(·) ∈ L∞(Ω), fi(·) ∈ L1(V ), gi(·) ∈ L∞(V ) and I finite (see [7]). We point out
that when the scattering kernel is space homogeneous, (H1) and (H2) reduce simply to the
compactness of the integral operator

L1(V ) 3 ϕ 7→
∫

V

k(v, v′)ϕ(v′)dµ(v′) ∈ L1(V ).

In this paper, the collision frequency is assumed to be space homogeneous, i.e.

σ(x, v) = σ(v).

Our paper is organized as follows: Section 2 is devoted to the neutron transport semigroup
in the whole space (Ω = RN ) with space homogeneous scattering kernels, i.e. k(x, v, v′) =
k(v, v′). We show that if there exists α > 0 such that for all c > 0 there exists c′ > 0 such
that

sup
e∈SN−1

µ⊗ µ{(v, v′); |v| ≤ c, |v′| ≤ c, |(v − v′) · e| ≤ ε} ≤ c′εα

then
0 ≤ t 7→ Rj(t) ∈ L(L1(Ω× V )) (1.3)

is norm continuous where j depends on α and N . The proof is quite technical and is given in
several steps: By a density argument, we can restrict ourselves to the separable case (1.2). In
this case, the terms of the Dyson-Phillips expansion (1.1) are shown to be essentially iterated
convolution of Radon measures depending on time t. In particular, the norm continuity of
(1.3) amounts to the fact that such measures depend continuously on t with respect to the
total variation norm. We show that for N ≥ 2, regardless of the choice of the velocity measure
µ,

0 ≤ t 7→ R1(t) = et(T+K) − etT
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is never norm continuous. On the other hand, for N = 1, we show that

0 ≤ t 7→ et(T+K) − etT

is norm continuous if and only if µ satisfies

sup
v′∈R

µ
{[

v′ − ε, v′ + ε
]} → 0 as ε → 0.

In section 3, we deal with general spatial domains and not (necessarily) space homogeneous
scattering kernels under the assumption that the velocity measure µ is ”absolutely continuous
in speed |v| but arbitrary in directions v

|v|” and prove that

0 ≤ t 7→ R2(t)

is norm continuous. We note however that such an assumption on µ covers the classical
continuous model (dµ(v) = dv) but not the multigroup model (Lebesgue measure on spheres).
Section 4 is devoted to spectral mapping theorems. We determine first the critical spectrum
of the streaming semigroup; we essentially complement some results given in [6, 7]. We derive
from the results of Section 2 spectral mapping theorems in the whole space for general velocity
measures and space homogeneous scattering kernels. Similarly, we derive from the results of
Section 3 a spectral mapping theorem for a restricted class of velocity measures but for general
spatial domains and scattering kernels.
The authors thank the referee for helpful remarks and suggestions.

2 On Dyson-Phillips expansions on the whole space

In this section devoted to the case Ω = RN , we assume that the scattering kernel is space
homogeneous and that

(H3) L1(V ) 3 ϕ 7→ ∫
V

k(v, v′)ϕ(v′)dµ(v′) ∈ L1(V ) is compact.

2.1 Arbitrary dimension

Theorem 2.1. Let Ω = RN . Let µ be a positive (not necessarily finite) Radon measure on
RN and let (H3) be satisfied. We assume that there exists α > 0 such that for all c > 0 there
exists c′ > 0 such that

sup
e∈SN−1

µ⊗ µ{(v, v′); |v| ≤ c, |v′| ≤ c, |(v − v′) · e| ≤ ε} ≤ c′εα. (2.1)

Let p1 be the smallest integer such that p1 > (α+1)
α

(
N
2 + 1

)
. Then

0 < t 7→ Rj(t) ∈ L(L1(RN × V ))

is norm continuous for all j ≥ 2p1.

Remark 2.2. Condition (2.1) is obviously satisfied by Lebesgue measures on open sets or
on spheres.
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The proof of Theorem 2.1 is quite technical and is given in several steps. We observe first
that Uj = [UK]j ∗U (j ≥ 1) where ∗ is the convolution operator which associates to strongly
continuous (operator valued) mappings

f, g : [0,∞[ → L(L1(RN × V ))

the strongly continuous mapping

f ∗ g : [0,∞[ 3 t 7→
t∫

0

f(t− s)g(s)ds ∈ L(L1(RN × V ))

and [UK]j := UK ∗ · · · ∗ UK (j times). Here U denotes the mapping 0 ≤ t 7→ U(t) and
UK : 0 ≤ t 7→ U(t)K. We note that: f, g 7→ f ∗g is associative. We recall that 0 ≤ t 7→ Rm(t)
is norm continuous if and only if 0 ≤ t 7→ Um(t) is so [4, Theorem 2.7, p. 18]. Moreover,
if 0 ≤ t 7→ [UK]m (t) is norm continuous then 0 < t 7→ Um(t) is also norm continuous. By
the same arguments it suffices to show that 0 ≤ t 7→ K [UK]m−1 (t) is norm continuous. By
density and linearity we may restrict ourselves to

K1U ∗K2U ∗ · · · ∗Km−1UKm

where Ki (i = 1, · · · ,m) has the form

L1(RN × V ) 3 ϕ 7→
∫

V

fi(v)gi(v′)ϕ(x, v′)dµ(v′) ∈ L1(RN × V )

where fi(·) ∈ L1(V ) and gi(·) ∈ L∞(V ). By density again and decomposition we can suppose
that fi and gi are nonnegative, and fi are continuous with compact supports. We can then
assume without loss of generality that µ has a compact support. Let

Mi : L1(RN × RN ) 3 ϕ 7→
∫

RN

ϕ(x, v′)gi(v′)dµ(v′) =
∫

RN

ϕ(x, v′)dµi(v′) ∈ L1(RN )

where µi = giµ. We have
KiMi = ‖µi‖Ki

and

K1U ∗K2U ∗ · · · ∗Km−1UKm =
m−1∏

i=1

‖µi‖−1 K1(M1UK2 ∗M2UK3 ∗ · · · ∗Mm−1UKm).

The latter operator is described in:

Lemma 2.3. Let m ≥ 2. There exists a finite Radon measure βm(t) on RN such that

M1UK2 ∗ · · · ∗MmUKm+1ϕ = βm(t) ∗Mm+1ϕ.

Proof. We first prove that

MiUKi+1ϕ = ηi
t ∗Mi+1ϕ
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where ηi
t is a finite Radon measure on RN . Indeed,

MiUKi+1ϕ =
∫

RN

fi+1(v)gi(v)e−tσ(v)Mi+1ϕ(x− tv)dµ(v)

=
∫

RN

hi(v)e−tσ(v)Mi+1ϕ(x− tv)dµ(v)

=
∫

RN

Mi+1ϕ(x− y)dηi
t(y) = ηi

t ∗Mi+1ϕ

where ηi
t is the image of e−tσ(v)hi(v)dµ under the dilation v 7→ tv and hi(v) = fi+1(v)gi(v).

Observe that the mapping 0 < t 7→ ηi
t ∈ M(RN ) (the space of finite Radon measures) is weak

star continuous, i.e., for any ϕ ∈ L1(RN ),

0 < t 7→ 〈
ηi

t, ϕ
〉

=
∫

RN

ϕ(x− tv)e−tσ(v)hi(v)dµ

is continuous. We have

M1UK2 ∗M2UK3ϕ =

t∫

0

M1U(t− s)K2M2U(s)K3ϕds

=

t∫

0

η1
t−s ∗M2(M2U(s)K3ϕ)ds

=

t∫

0

η1
t−s ∗M2(η2

s ∗M3ϕ)ds

= ‖µ2‖
t∫

0

η1
t−s ∗ (η2

s ∗M3ϕ)ds

= ‖µ2‖
t∫

0

(η1
t−s ∗ η2

s) ∗M3ϕds

= ‖µ2‖
[ t∫

0

(η1
t−s ∗ η2

s)ds
]
∗M3ϕ

=: β2(t) ∗M3ϕ

where the integral

β2(t) = ‖µ2‖
t∫

0

(η1
t−s ∗ η2

s)ds (2.2)

is taken in the weak star sense, i.e.

〈
β2(t), ϕ

〉
:= ‖µ2‖

t∫

0

〈
η1

t−s ∗ η2
s , ϕ

〉
ds.
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Now, suppose that

M1UK2 ∗ · · · ∗Mm−1UKmϕ = βm−1(t) ∗Mmϕ.

Then

[M1UK2 ∗ · · · ∗MmUKm+1] (t)ϕ =

t∫

0

[M1UK2 ∗ · · · ∗Mm−1UKm] (t− s)(MmU(s)Km+1ϕ)ds

=

t∫

0

βm−1(t− s) ∗Mm(MmU(s)Km+1ϕ)ds

=

t∫

0

βm−1(t− s) ∗Mm(ηm
s ∗Mm+1ϕ)ds

= ‖µm‖
t∫

0

βm−1(t− s) ∗ (ηm
s ∗Mm+1ϕ)ds

= ‖µm‖
[ t∫

0

βm−1(t− s) ∗ ηm
s ds

]
∗Mm+1ϕ

=: βm(t) ∗Mm+1ϕ

where the integral

βm(t) = ‖µm‖
t∫

0

βm−1(t− s) ∗ ηm
s ds (2.3)

is taken in the weak star sense, i.e.

〈βm(t), ϕ〉 = ‖µm‖
t∫

0

〈
βm−1(t− s) ∗ ηm

s , ϕ
〉
ds.

Then βm(t) is defined inductively by (2.3) which ends the proof. ¥

Thus, to prove Theorem 2.1, it suffices to prove:

Lemma 2.4. Let p1 be the smallest integer such that p1 > α+1
α (N

2 + 1). Then for p ≥ p1

0 ≤ t 7→ β2p(t) ∈ M(RN )

is continuous, where M(RN ) (the space of finite Radon measures) is endowed with the total
variation norm.

The proof of Lemma 2.4 is given in several steps. Before doing this, as in the proof of Lemma
2.3, we can show, for p > 1, that

β2p(t) = ‖µ2p−1‖
t∫

0

β2(p−1)(t− s) ∗ β2p−1,2p(s)ds (2.4)
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where

βi,i+1(t) = ‖µi+1‖
t∫

0

ηi
t−s ∗ ηi+1

s ds.

Let us show first that for p large enough β2p(t) is a function, i.e. β2p(t) is absolutely continuous
with respect to Lebesgue measure.

Lemma 2.5. Let p0 be the smallest integer such that p0 > N(α+1)
2α . Then for all p ≥ p0 we

have β2p(t) ∈ L2(RN ) ∩ L1(RN ) for all t ∈ [0, T ] .

Proof. We start with β2(t) (see (2.2)). We have

‖µ2‖−1 β̂2(t)(ξ)

= (2π)N/2

t∫

0

η̂1
t−s(ξ)η̂2

s(ξ)ds

= (2π)−N/2

t∫

0

[ ∫

RN

e−iv·ξdη1
t−s(v)

][ ∫

RN

e−iv′·ξdη2
s(v

′)
]
ds

= (2π)−N/2

t∫

0

[ ∫

RN

e−i(t−s)v·ξe−(t−s)σ(v)h1(v)dµ(v)
][ ∫

RN

e−isv′·ξe−sσ(v′)h2(v′)dµ(v′)
]
ds

= (2π)−N/2

∫

RN

∫

RN

[ t∫

0

e−i(t−s)v·ξe−(t−s)σ(v)e−isv′·ξe−sσ(v′)ds
]
h1(v)h2(v′)dµ(v)dµ(v′).

Introducing polar coordinates ξ = |ξ| e, e ∈ SN−1, we decompose the last integral as

∫∫

|(v′−v)·e|≤ε

[ t∫

0

e−i(t−s)v·ξe−(t−s)σ(v)e−isv′·ξe−sσ(v′)ds
]
h1(v)h2(v′)dµ(v)dµ(v′)

+
∫∫

|(v′−v)·e|>ε

[ t∫

0

e−i(t−s)v·ξe−(t−s)σ(v)e−isv′·ξe−sσ(v′)ds
]
h1(v)h2(v′)dµ(v)dµ(v′)

where ε > 0 is arbitrary. We have

∣∣∣
∫∫

|(v′−v)·e|≤ε

[ t∫

0

e−i(t−s)v·ξe−(t−s)σ(v)e−isv′·ξe−sσ(v′)ds
]
h1(v)h2(v′)dµ(v)dµ(v′)

∣∣∣

≤ te2t‖σ‖∞ ‖h1h2‖∞
∫∫

|(v′−v)·e|≤ε

dµ(v)dµ(v′).

We estimate the second integral

∣∣∣
∫∫

|(v′−v)·e|>ε

[ t∫

0

e−i(t−s)v·ξe−(t−s)σ(v)e−isv′·ξe−sσ(v′)ds
]
h1(v)h2(v′)dµ(v)dµ(v′)

∣∣∣
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≤
∫∫

|(v′−v)·e|>ε

∣∣∣e−itv′·ξe−tσ(v′) − e−itv·ξe−tσ(v)
∣∣∣

|i(v − v′) · ξ + σ(v)− σ(v′)|
∣∣h1(v)h2(v′)

∣∣ dµ(v)dµ(v′)

≤
∫∫

|(v′−v)·e|>ε

2 |h1(v)h2(v′)|
|(v − v′) · e| |ξ|dµ(v)dµ(v′)

≤ 2
ε |ξ|

∫∫

|(v′−v)·e|>ε

∣∣h1(v)h2(v′)
∣∣ dµ(v)dµ(v′) ≤ 2‖h1‖1‖h2‖1

ε |ξ| .

Thus

∣∣β̂2(t)(ξ)
∣∣ ≤ (2π)−N/2 ‖µ2‖

(
Te2T‖σ‖∞ ‖h1h2‖∞

∫∫

|(v′−v)·e|≤ε

dµ(v)dµ(v′) +
2 ‖h1‖1‖h2‖1

ε |ξ|
)
.

Let 0 < τ < 1 and ε = |ξ|−τ then

∣∣β̂2(t)(ξ)
∣∣ ≤ (2π)−N/2 ‖µ2‖ (Te2T‖σ‖∞ ‖h1h2‖∞ + 2 ‖h1‖1‖h2‖1)(a(ξ) + b(ξ))

=: C1(a(ξ) + b(ξ)),

where

a(ξ) := sup
e∈SN−1

µ⊗ µ
{

(v, v′);
∣∣(v′ − v) · e∣∣ ≤ |ξ|−τ

}
and b(ξ) :=

1
|ξ|1−τ .

Consider

β2p−1,2p(t) = ‖µ2p‖
t∫

0

η2p−1
t−s ∗ η2p

s ds;

as previously we can prove that

∣∣ ̂β2p−1,2p(t)(ξ)
∣∣ ≤ (2π)−N/2‖µ2p‖(Te2T‖σ‖∞ ‖h2p−1h2p‖∞ + 2 ‖h2p−1‖1‖h2p‖1)(a(ξ) + b(ξ)).(2.5)

Now let us prove by induction that there exists Cp > 0 (depending only on p) such that

∣∣β̂2p(t)(ξ)
∣∣ ≤ Cp(a(ξ) + b(ξ))p for all t ∈ [0, T ] .

Suppose that there exists Cp−1 > 0 such that

∣∣ ̂β2(p−1)(t)(ξ)
∣∣ ≤ Cp−1(a(ξ) + b(ξ))p−1 for all t ∈ [0, T ] .

Then by (2.4) and (2.5) we have

‖µ2p−1‖−1
∣∣β̂2p(t)(ξ)

∣∣

≤ (2π)N/2

t∫

0

∣∣ ̂β2(p−1)(t− s)(ξ) ̂β2p−1,2p(s)(ξ)
∣∣ds

≤ tCp−1(a(ξ) + b(ξ))p−1‖µ2p‖(Te2T‖σ‖∞ ‖h2p−1h2p‖∞ + 2‖h2p−1‖1‖h2p‖1)(a(ξ) + b(ξ)).
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Then ∣∣β̂2p(t)(ξ)
∣∣ ≤ Cp(a(ξ) + b(ξ))p for all t ∈ [0, T ] (2.6)

where Cp := ‖µ2p−1‖‖µ2p‖TCp−1

(
Te2T‖σ‖∞‖h2p−1h2p‖∞ + 2‖h2p−1‖1‖h2p‖1)

)
. Put τ = 1

1+α

(clearly 0 < τ < 1) using (2.1) we obtain

∣∣β̂2p(t)(ξ)
∣∣ ≤ Cp[

c′

|ξ|ατ
+

1
|ξ|1−τ

]p ≤ 2pCp(max{c′, 1})p

|ξ| pα
1+α

.

Hence β̂2p(t) ∈ L2(RN ) for all p ≥ p0 > N(1+α)
2α and for all t ∈ [0, T ] . By Parseval’s identity

we have β2p(t) ∈ L2(RN ) for all p ≥ p0 > N(1+α)
2α and for all t ∈ [0, T ] . Since β2p(t) is also a

bounded Radon measure on RN we conclude that β2p(t) ∈ L1(RN ). ¥

Now, the proof of Lemma 2.4 amounts to

0 ≤ t 7→ β2p(t) ∈ L1(RN ) is continuous. (2.7)

We deal first with the continuity in L2 norm.

Lemma 2.6. Let p1 be the smallest integer such that p1 > α+1
α (N

2 +1). Then for all p ≥ p1,
]0, T ] 3 t 7→ β2p(t) ∈ L2(RN ) is continuous.

Proof. We note the following elementary estimates which will be used repeatedly in the
sequel. There exists C > 1 such that

∣∣e−itv·ξ−tσ(v) − e−itv·ξ−tσ(v)
∣∣ ≤ C max{1, |ξ|}∣∣t− t

∣∣ (2.8)

and ∣∣e−it(v−v′)·ξ−t(σ(v)−σ(v′)) − e−it(v−v′)·ξ−t(σ(v)−σ(v′))∣∣ ≤ C max{1, |ξ|} ∣∣t− t
∣∣ (2.9)

for all t, t ∈ [0, T ] , for almost all v, v′ ∈ V and for all ξ ∈ RN .

In a first step we prove inductively that

∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)
∣∣ ≤ C∗

p

∣∣t− t
∣∣ |ξ| (a(ξ) + b(ξ))p

for all ξ such that |ξ| ≥ 1, where C∗
p is some constant which depends only on p. We recall

that
a(ξ) := sup

e∈SN−1

µ⊗ µ
{
(v, v′);

∣∣(v′ − v) · e∣∣ ≤ |ξ|−τ} and b(ξ) :=
1

|ξ|1−τ .

Using the expression of β̂2(t)(ξ) given in the proof of Lemma 2.5 we have

‖µ2‖−1
(
β̂2(t)(ξ)− β̂2(t)(ξ)

)

= (2π)−N/2

∫

RN

∫

RN

h1(v)h2(v′)dµ(v)dµ(v′)

×
[ t∫

0

e−i(t−s)v·ξ−(t−s)σ(v)e−isv′·ξ−sσ(v′)ds−
t∫

0

e−i(t−s)v·ξ−(t−s)σ(v)e−isv′·ξ−sσ(v′)
]
ds

11



= (2π)−N/2

∫

RN

∫

RN

h1(v)h2(v′)dµ(v)dµ(v′)

×
[
e−itv·ξ−tσ(v)

t∫

t

e−is(v′−v)·ξ−s(σ(v′)−σ(v))ds

+(e−itv·ξ−tσ(v) − e−itv·ξ−tσ(v))

t∫

0

e−is(v′−v)·ξ−s(σ(v′)−σ(v))ds
]
. (2.10)

Introducing polar coordinates ξ = |ξ| e, e ∈ SN−1, we decompose the last integral as
∫∫

|(v′−v)·e|≤|ξ|−τ

h1(v)h2(v′)dµ(v)dµ(v′)

×
[
e−itv·ξ−tσ(v)

t∫

t

e−is(v−v)·ξ−s(σ(v′)−σ(v))ds

+(e−itv·ξ−tσ(v) − e−itv·ξ−tσ(v))

t∫

0

e−is(v′−v)·ξ−s(σ(v′)−σ(v))ds
]

+
∫∫

|(v′−v)·e|>|ξ|−τ

h1(v)h2(v′)dµ(v)dµ(v′)

×
[
e−itv·ξ−tσ(v)

t∫

t

e−is(v−v)·ξ−s(σ(v′)−σ(v))ds

+(e−itv·ξ−tσ(v) − e−itv·ξ−tσ(v))

t∫

0

e−is(v′−v)·ξ−s(σ(v′)−σ(v))ds
]

=: I1 + I2.

Clearly

∣∣∣
∫∫

|(v′−v)·e|≤|ξ|−τ

h1(v)h2(v′)dµ(v)dµ(v′)e−itv·ξ−tσ(v)

t∫

t

e−is(v′−v)·ξ−s(σ(v′)−σ(v))ds
∣∣∣

≤ e2T‖σ‖∞ |t− t|
∫∫

|(v′−v)·e|≤|ξ|−τ

∣∣h1(v)h2(v′)
∣∣ dµ(v)dµ(v′)

≤ e2T‖σ‖∞ ‖h1h2‖∞
∣∣t− t

∣∣a(ξ). (2.11)

Using (2.8) we obtain

∣∣∣
∫∫

|(v′−v).e|≤|ξ|−τ

h1(v)h2(v′)dµ(v)dµ(v′)(e−itv·ξ−tσ(v) − e−itv·ξ−tσ(v))
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×
t∫

0

e−is(v′−v)·ξ−s(σ(v′)−σ(v))ds
∣∣∣

≤ C |ξ| ∣∣t− t
∣∣Te2T‖σ‖∞

∫∫

|(v′−v)·e|≤|ξ|−τ

∣∣h1(v)h2(v′)
∣∣ dµ(v)dµ(v′)

≤ CTe2T‖σ‖∞ ‖h1h2‖∞ a(ξ) |ξ| ∣∣t− t
∣∣. (2.12)

Then adding (2.11) and (2.12) we get

|I1| ≤ (1 + CT )e2T‖σ‖∞ ‖h1h2‖∞ a(ξ) |ξ| ∣∣t− t
∣∣ ∀ |ξ| ≥ 1. (2.13)

Consider I2. First we have by (2.9)

∣∣∣
∫∫

|(v′−v)·e|>|ξ|−τ

h1(v)h2(v′)dµ(v)dµ(v′)e−itv·ξ−tσ(v)

t∫

t

e−is(v′−v)·ξ−s(σ(v′)−σ(v))ds
∣∣∣

≤
∫∫

|(v′−v)·e|>|ξ|−τ

∣∣h1(v)h2(v′)
∣∣
∣∣∣e
−it(v′−v)·ξ−t(σ(v′)−σ(v)) − e−it(v′−v)·ξ−t(σ(v′)−σ(v))

i(v − v′) · ξ + σ(v)− σ(v′)

∣∣∣dµ(v)dµ(v
′
)

≤
∫∫

|(v′−v)·e|>|ξ|−τ

∣∣h1(v)h2(v′)
∣∣ C |ξ| ∣∣t− t

∣∣
|(v − v′) · e| |ξ|dµ(v)dµ(v′)

≤
∫∫

|(v′−v)·e|>|ξ|−τ

∣∣h1(v)h2(v′)
∣∣ C |ξ| ∣∣t− t

∣∣
|ξ|−τ |ξ| dµ(v)dµ(v′)

≤ C‖h1‖1‖h2‖1b(ξ) |ξ|
∣∣t− t

∣∣. (2.14)

Similarly, applying (2.8) we obtain
∣∣∣

∫∫

|(v′−v)·e|>|ξ|−τ

h1(v)h2(v′)dµ(v)dµ(v′)(e−itv·ξ−tσ(v) − e−itv·ξ−tσ(v))

×
t∫

0

e−is(v′−v)·ξ−s(σ(v′)−σ(v))ds
∣∣∣

≤
∫∫

|(v′−v)·e|>|ξ|−τ

∣∣h1(v)h2(v′)
∣∣
∣∣∣e−itv·ξ−tσ(v) − e−itv·ξ−tσ(v)

∣∣∣

×
∣∣∣e
−it(v′−v)·ξ−t(σ(v′)−σ(v)) − 1

i(v − v′) · ξ + σ(v)− σ(v′)

∣∣∣dµ(v)dµ(v′)

≤ (e2T‖σ‖∞ + 1)C‖h1‖1‖h2‖1b(ξ) |ξ|
∣∣t− t

∣∣ . (2.15)

Thus adding (2.14) and (2.15)

|I2| ≤ (e2T‖σ‖∞ + 2)C‖h1‖1‖h2‖1b(ξ) |ξ|
∣∣t− t

∣∣ ∀ |ξ| ≥ 1. (2.16)

By (2.13) and (2.16) we have
∣∣β̂2(t)(ξ)− β̂2(t)(ξ)

∣∣ ≤ C∗
1 (a(ξ) + b(ξ)) |ξ| ∣∣t− t

∣∣ ∀ |ξ| ≥ 1
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where C∗
1 := (2π)−N/2‖µ2‖

[
(1 + CT )e2T‖σ‖∞ ‖h1h2‖∞ + (e2T‖σ‖∞ + 2)C‖h1‖1‖h2‖1

]
. Let us

show that there exists C∗
p which depends only on p such that

∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)
∣∣ ≤ C∗

p |ξ|
∣∣t− t

∣∣(a(ξ) + b(ξ))p for |ξ| ≥ 1 and t, t ∈ [0, T ] .

Suppose that

∣∣ ̂β2(p−1)(t)(ξ)− ̂β2(p−1)(t)(ξ)
∣∣ ≤ C∗

p−1 |ξ|
∣∣t− t

∣∣ (a(ξ) + b(ξ))p−1

for |ξ| ≥ 1 and t, t ∈ [0, T ] . Thanks to (2.4), (2.5) and (2.6) we have

‖µ2p−1‖−1
∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)

∣∣

≤ (2π)N/2

t∫

0

∣∣ ̂β2(p−1)(t− s)(ξ)− ̂β2(p−1)(t− s)(ξ)
∣∣∣∣ ̂β2p−1,2p(s)(ξ)

∣∣ds

+(2π)N/2

t∫

t

∣∣ ̂β2(p−1)(t− s)(ξ)
∣∣∣∣ ̂β2p−1,2p(s)(ξ)

∣∣ds

≤ tC∗
p−1‖µ2p‖

(
Te2T‖σ‖∞ ‖h2p−1h2p‖∞ + 2‖h2p−1‖1‖h2p‖1

) ∣∣ξ∣∣∣∣t− t
∣∣(a(ξ) + b(ξ))p

+Cp−1‖µ2p‖
(
Te2T‖σ‖∞ ‖h2p−1h2p‖∞ + 2‖h2p−1‖1‖h2p‖1

) ∣∣t− t
∣∣(a(ξ) + b(ξ))p.

Then ∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)
∣∣ ≤ C∗

p |ξ|
∣∣t− t

∣∣(a(ξ) + b(ξ))p (2.17)

for |ξ| ≥ 1 and t, t ∈ [0, T ] where

C∗
p := ‖µ2p−1‖‖µ2p‖

(
Te2T‖σ‖∞ ‖h2p−1h2p‖∞ + 2‖h2p−1‖1‖h2p‖1

) (
TC∗

p−1 + Cp−1

)
.

We are going to estimate

∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)
∣∣ for |ξ| < 1.

Using (2.8) and decomposition (2.10) we obtain

∣∣β̂2(t)(ξ)− β̂2(t)(ξ)
∣∣ ≤ (2π)−N/2‖µ2‖

(
e2T‖σ‖∞‖h1‖1‖h2‖1 + TCe2T‖σ‖∞‖h1‖1‖h2‖1

) ∣∣t− t
∣∣

=: C∗1
∣∣t− t

∣∣ for |ξ| < 1.

Inductively we can obtain

∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)
∣∣ ≤ C∗p

∣∣t− t
∣∣ for |ξ| < 1 (2.18)

where C∗p > 0 depends only on p. Considering (2.17), choosing τ = 1
1+α and using (2.1) and

(2.18) we obtain
∫

RN

∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)
∣∣2dξ
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≤
∫

|ξ|<1

∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)
∣∣2dξ +

∫

|ξ|≥1

∣∣β̂2p(t)(ξ)− β̂2p(t)(ξ)
∣∣2dξ

≤ C2
∗p

∣∣t− t
∣∣2vol(B(0, 1)) +

(
2pC∗

p(max{c′, 1})p
)2∣∣t− t

∣∣2
∫

|ξ|≥1

|ξ|2(1−p α
1+α

) dξ

≤ ∣∣t− t
∣∣2

[
C2
∗pvol(B(0, 1)) +

(
2pC∗

p(max{c′, 1})p
)2

∫

|ξ|≥1

|ξ|2(1−p α
1+α

) dξ
]

for p ≥ p1 > 1+α
α (N

2 + 1) where vol(B(0, 1)) is the volume of unit ball of RN . ¥

Before proving (2.7) we need the following two lemmas.

Lemma 2.7. Let ν be a positive Radon measure on RN with compact support and (β(t))t≥0

be a family of positive measures uniformly bounded in t ∈ [0, T ] (for all T > 0) and such that

β(t){RN\B(0, n)} → 0 as n →∞ (2.19)

uniformly in t ∈ [δ, 1
δ ] for all δ > 0 where B(0, n) is the ball centred at 0 with radius n. Then

t∫

0

β(t− s) ∗ νsds{RN\B(0, n)} → 0 as n →∞

uniformly in t ∈ [0, T ] for all T > 0 where νs is the image of ν under the dilation v 7→ sv.

Proof. Let T > 0, ε > 0 and t ∈ [0, T ]. Set M = sup
t∈[0,T ]

‖β(t)‖ . By definition we have

β(t− s) ∗ νs{RN\B(0, n)} =
∫∫

RN×RN

χRN\B(0,n)(x + y)dνs(x)dβ(t− s)(y)

=
∫

RN

β(t− s){−x + RN\B(0, n)}dνs(x)

=
∫

RN

β(t− s){−sx + RN\B(0, n)}dν(x). (2.20)

We note that

t∫

0

β(t− s) ∗ νsds{RN\B(0, n)}

=

ε∫

0

β(t− s) ∗ νsds{RN\B(0, n)}+

t−ε∫

ε

β(t− s) ∗ νsds{RN\B(0, n)}

+

t∫

t−ε

β(t− s) ∗ νsds{RN\B(0, n)}

=: I1 + I2 + I3.
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From (2.20)
I1 ≤ εM ‖ν‖ and I3 ≤ εM ‖ν‖ . (2.21)

On the other hand, there exists a compact set Cε such that

Supp νs ⊂ Cε for all s ∈ [ε, T ],

where Supp ν denotes the support of ν. It follows that there exists an integer n0 such that

−x + RN\B(0, n) ⊂ RN\B(0,
n

2
)

for all n ≥ n0 and for all x ∈ Cε and then

I2 ≤
t−ε∫

ε

∫

RN

β(t− s){RN\B(0,
n

2
)}dνs(x)ds

≤ sup
r∈[ε,T ]

β(r){RN\B(0,
n

2
)}

t−ε∫

ε

∫

RN

dνs(x)ds

≤ T‖ν‖ sup
r∈[ε,T ]

β(r){RN\B(0,
n

2
)}.

Thanks to (2.19) there exists an integer n1 ≥ n0 such that

I2 ≤ T‖ν‖ε (2.22)

for all n ≥ n1 and for all t ∈ [ε, T ]. Using (2.21) and (2.22) we obtain

I1 + I2 + I3 ≤ ε‖ν‖(2M + T )

for all n ≥ n1 and t ∈ [0, T ]. ¥

Lemma 2.8. For all m ≥ 2 we have

βm(t){RN\B(0, n)} → 0 as n →∞ (2.23)

uniformly in t ∈ [0, T ] for all T > 0.

Proof. Taking advantage of the expression (2.3), i.e.

βm(t) = ‖µm‖
t∫

0

βm−1(t− s) ∗ ηm
s ds

we apply inductively Lemma 2.7 to show (2.23). Indeed, we first observe that for T > 0

sup
t∈[0,T ]

‖βm(t)‖ < ∞ (2.24)

which is true for m = 2 since (2.2) shows

‖β2(t)‖ ≤ T‖µ2‖‖h1‖1‖h2‖1
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for t ∈ [0, T ]. The proof of (2.24) follows by induction. Let us show that η1
s satisfies (2.19).

Since η1 has compact support, there exists a compact set Cδ, which depends only on δ, such
that Supp η1

s ⊂ Cδ for all s ∈ [δ, 1
δ ]. Thus Supp η1

s ⊂ Cδ ⊂ B(0, n) for n large enough and
then

η1
s{RN\B(0, n)} = 0 for all s ∈ [δ,

1
δ
].

Combining this with the uniform boundedness of (η1
s)s≥0 and Lemma 2.7 we get

β2(t){RN\B(0, n)} → 0 as n →∞ (2.25)

uniformly on compact intervals of [0,+∞[ . Now, using (2.3), (2.24) and (2.25), it is easy to
end the proof by induction. ¥

We are now ready to prove Lemma 2.4.

Proof of Lemma 2.4 It suffices to show (2.7). Let t > 0 and ε > 0. From Lemma 2.8
there exists n0 such that

β2p1(t){RN\B(0, n0)} ≤ ε

3
uniformly in t ∈ [

t− δ, t + δ
]

(with a suitable choice of δ). Then
∫

RN

∣∣β2p1(t)(x)− β2p1(t)(x)
∣∣dx

≤
∫

B(0,n0)

∣∣β2p1(t)(x)− β2p1(t)(x)
∣∣dx +

∫

RN\B(0,n0)

∣∣β2p1(t)(x)− β2p1(t)(x)
∣∣dx

≤ [vol(B(0, n0))]
1
2

[ ∫

B(0,n0)

∣∣β2p1(t)(x)− β2p1(t)(x)
∣∣2dx

] 1
2

+
∫

RN\B(0,n0)

β2p1(t)(x)dx +
∫

RN\B(0,n0)

β2p1(t)(x)dx

≤ [vol(B(0, n0))]
1
2

[ ∫

RN

∣∣β2p1(t)(x)− β2p1(t)(x)
∣∣2dx

] 1
2 +

ε

3
+

ε

3

for t ∈ [
t− δ, t + δ

]
. By Lemma 2.6 there exists δ1 > 0 such that

[ ∫

RN

∣∣β2p1(t)(x)− β2p1(t)(x)
∣∣2dx

] 1
2 ≤ ε

3vol(B(0, n0))

for t ∈ [
t− δ1, t + δ1

]
. Thus

∫

RN

∣∣β2p1(t)(x)− β2p1(t)(x)
∣∣dx ≤ ε

for t ∈ [
t− δ1, t + δ1

]
which ends the proof. ¥
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Remark 2.9. It is an open problem to prove Theorem 2.1 when Ω 6= RN or when the
scattering kernels are not space homogeneous.

In the Lp theory (1 < p < ∞), 0 ≤ t 7→ R1(t) is norm continuous [7]. We now show that
this is never true in L1.

Theorem 2.10. Let µ be a positive Radon measure with compact support V 6= {0} and let
Ω = RN with N ≥ 2. Let σ = 0 and

K : L1(RN × V ) 3 ϕ 7→
∫

V

ϕ(x, v′)dµ(v′).

Then there exists a sequence tn → 0 such that t 7→ R1(t) is not norm continuous at tn for all
n.

Proof. If (for some T > 0) ]0, T ] 3 t 7→ R1(t) is norm continuous, then ]0, T ] 3 t 7→ U1(t)
would be also norm continuous [4, Lemma 2.3, p. 16]. Thus it suffices to prove that 0 < t 7→
U1(t) is not norm continuous. Let t > 0. We recall that

U1(t) =

t∫

0

U(t− s)KU(s)ds.

To show that 0 < t 7→ U1(t) is not norm continuous at t it suffices to show that

0 < t 7→ Ũ1(t) :=

t∫

0

U(t− s)KU(s)ds

is not norm continuous at t. Let

Lv := {αv; α ∈ R}
be the line with direction v ∈ SN−1. Without loss of generality, we may assume that

µ{Lv} < ‖µ‖. (2.26)

Indeed, if for some v ∈ SN−1 µ{Lv} = ‖µ‖, then for all v ∈ SN−1 with v 6= v we have
Lv ∩ Lv = {0} and

‖µ‖ ≥ µ{Lv ∪ Lv}
= µ{Lv}+ µ{Lv} − µ{0} = ‖µ‖+ µ{Lv} − µ{0}

so
µ{Lv} ≤ µ{0} < ‖µ‖

since µ is not supported by {0}. Let (fj)j ⊂ L1(R× V ) be a normalized sequence converging
in the weak star topology of measures to the Dirac mass δ(0,v) = δx=0 ⊗ δv=v. It is clear that

‖Ũ1(t)− Ũ1(t)‖ ≥ sup
j∈N

‖Ũ1(t)fj − Ũ1(t)fj‖

= sup
j∈N

sup
{ϕ∈Cc(RN×V ); ‖ϕ‖∞=1}

〈Ũ1(t)fj − Ũ1(t)fj , ϕ〉
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≥ sup
{ϕ∈Cc(RN×V ); ‖ϕ‖∞=1}

limj→∞〈Ũ1(t)fj − Ũ1(t)fj , ϕ〉,

where Cc(RN × V ) stands for the space of continuous functions with compact supports. On
the other hand 〈Ũ1(t)fj , ϕ〉 is equal to

∫

RN×V

dxdµ(v)ϕ(x, v)

t∫

0

ds

∫

V

fj(x− (t− s)v − sv′, v′)dµ(v′)

=
∫

V

dµ(v)
∫

V

dµ(v′)

t∫

0

ds

∫

RN

fj(y, v′)ϕ(y + (t− s)v + sv′, v)dy

=
∫

RN×V

dydµ(v′)fj(y, v′)
∫

V

dµ(v)

t∫

0

ϕ(y + (t− s)v + sv′, v)ds

→
∫

V

dµ(v)

t∫

0

ϕ((t− s)v + sv, v)ds

as j →∞ so

‖Ũ1(t)− Ũ1(t)‖ ≥ sup
{ϕ∈Cc(RN×V ); ‖ϕ‖∞=1}

∫

V

dµ(v)

t∫

0

ϕ((t− s)v + sv, v)−ϕ((t− s)v + sv, v)ds.

Our goal, now, is to prove that for every t 6= t the last supremum is bounded away by a
positive constant independent of t. Let

Γt,v := {tv + s(v − v); s ∈ [0, t]}

be a segment starting at tv with direction v − v. For t 6= t and v /∈ Lv the segments Γt,v and
Γt,v are disjoint. Let

Lt,v := {tv + s(v − v); s ∈ R}
be the line passing through tv and with direction v − v (it contains Γt,v). Note that Lt,v and
Lt,v are disjoint if v /∈ Lv and are identical otherwise. Define the function ϕt on RN × (V \Lv)
by:

ϕt(x, v) =
d(x, Lt,v)

d(x, Lt,v) + d(x, Lt,v)

where d(x, Lt,v) = inf
y∈Lt,v

|x− y| = inf
s∈R

|x− tv − s(v − v)| is given by

d(x, Lt,v) = |x− tv − 〈x− tv, v − v〉|v − v|−2(v − v)|

where 〈·, ·〉 denotes the scalar product in RN . Then ϕt is continuous on RN × (V \Lv) and

ϕt(x, v) =
{

1 for x ∈ Γt,v

0 for x ∈ Γt,v.
(2.27)
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Let θε : V → R be a continuous function satisfying 0 ≤ θε(v) ≤ 1, θε(v) = 0 if v ∈ C1
ε and

θε(v) = 1 if v /∈ C2
ε , where

C1
ε = V ∩ {v ∈ RN ; d(v, Lv) ≤ ε

2
}

and
C2

ε = V ∩ {v ∈ RN ; d(v, Lv) ≤ ε}.
The function θεϕ

t : RN×V 3 (x, v) 7→ ϕt(x, v)θε(v) is continuous in RN×V . Let ψ ∈ Cc(RN )
be a function verifying 0 ≤ ψ ≤ 1 and ψ = 1 on the compact set

⋃
(t,v)∈Ξ Γt,v, where Ξ =

[t− δ, t + δ]× V (for some fixed δ > 0). Using (2.27), the function

φt
ε : RN × V 3 (x, v) 7→ ϕt(x, v)θε(v)ψ(x),

which is in Cc(RN × V ) because ψ has compact support in RN and V is compact, satisfies

∫

V

t∫

0

φt
ε((t− s)v + sv, v)− φt

ε((t− s)v + sv, v)dsdµ(v)

=
∫

V

t∫

0

φt
ε((t− s)v + sv, v)dsdµ(v)

≥
∫

V \C2
ε

t∫

0

φt
ε((t− s)v + sv, v)dsdµ(v)

= tµ{V \C2
ε}.

Finally, since µ{V \C2
ε} → µ{V \Lv} as ε → 0, it follows from (2.26) that

‖Ũ1(t)− Ũ1(t)‖ ≥ tµ{V \Lv} > 0

for all t 6= t. ¥

2.2 The dimension one

The one dimensional theory (N = 1) is very different. We have:

Theorem 2.11. Let µ be a positive Radon measure on R satisfying

sup
v′∈R

µ
{[

v′ − ε, v′ + ε
]} → 0 as ε → 0. (2.28)

We assume that (H3) is satisfied. Then

0 < t 7→ R1(t) ∈ L(L1(R× R))

is norm continuous.
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Proof. We recall that 0 ≤ t 7→ R1(t) is norm continuous if and only if

0 ≤ t 7→ U1(t) =

t∫

0

U(t− s)KU(s)ds

is so [4, Theorem 2.7, p. 18]. By density arguments we may suppose that K is of the form

K : L1(R× R) 3 ϕ 7→
∫

R

ϕ(x, v′)f(v)g(v′)dµ(v′) ∈ L1(R× R),

where g(·) ∈ L∞(R) and f(·) is continuous with compact support. We have

U1(t)ϕ =

t∫

0

U(t− s)KU(s)ϕds

=

t∫

0

∫

R

f(v)e−(t−s)σ(v)−sσ(v′)ϕ(x− (t− s)v − sv′, v′)g(v′)dsdµ(v′)

=

v∫

−∞

x−tv′∫

x−tv

ϕ(y, v′)Θ(t, v, v′, x, y)(v − v′)−1dydµ(v′)

+

+∞∫

v

x−tv′∫

x−tv

ϕ(y, v′)Θ(t, v, v′, x, y)(v − v′)−1dydµ(v′)

=: O1(t)ϕ + O2(t)ϕ,

where
Θ(t, v, v′, x, y) = f(v)g(v′)e−(x−y−tv′)(v−v′)−1σ(v)e−(y−x+tv)(v−v′)−1σ(v′).

Let us show that both 0 < t 7→ O1(t) and 0 < t 7→ O2(t) are norm continuous. We restrict
ourselves for instance to 0 < t 7→ O1(t) since the same argument holds for 0 < t 7→ O2(t).
Note that

O1(t)ϕ =
∫

R

∫

R

ϕ(y, v′)Θ(t, v, v′, x, y)E(t, v, v′, x, y)dydµ(v′)

where
E(t, v, v′, x, y) = χ{v′<v}χ{y+tv′≤x≤y+tv}|v − v′|−1.

Let
Oε

1(t) : ϕ 7→
∫

R

∫

R

ϕ(y, v
′
)Θ(t, v, v′, x, y)Eε(t, v, v′, x, y)dydµ(v′)

where Eε(t, v, v′, x, y) = E(t, v, v′, x, y)χ{ε≤|v−v′|}. We are going to show that

‖O1(t)−Oε
1(t)‖ → 0 as ε → 0

uniformly on t ∈ [0, T ] . Since

|Θ(t, v, v′, x, y)| ≤ e2T‖σ‖∞‖f‖∞‖g‖∞ =: C
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when t ∈ [0, T ] and (t, v, v′, x, y) ∈ Supp E, we have

‖O1(t)ϕ−Oε
1(t)ϕ‖

=
∫

R

dµ(v)
∫

R

dx
∣∣∣
∫

R

∫

R

ϕ(y, v′)Θ(t, v, v′, x, y)[E(t, v, v′, x, y)−Eε(t, v, v′, x, y)]dydµ(v′)
∣∣∣

≤ C

∫

R

dµ(v)
∫

R

dx

∫

R

∫

R

∣∣ϕ(y, v′)
∣∣E(t, v, v′, x, y)χ{|v−v′|<ε}dydµ(v′)

≤ C

∫

R

dµ(v′)
∫

R

∣∣ϕ(y, v′)
∣∣dy

∫

R

χ{|v−v′|<ε}dµ(v)
∫

R

E(t, v, v′, x, y)dx.

Now
∫
R

E(t, v, v′, x, y)dx = |v − v′|−1
y+tv∫

y+tv′
dx = t implies

‖O1(t)ϕ−Oε
1(t)ϕ‖ ≤ Ct

∫

R

dµ(v′)
∫

R

∣∣ϕ(y, v′)
∣∣ dy

∫

R

χ{|v−v′|<ε}dµ(v)

≤ CT sup
v′∈R

µ
{[

v′ − ε, v′ + ε
]} ‖ϕ‖,

which shows, by using (2.28), that ‖O1(t)−Oε
1(t)‖ → 0 as ε → 0 uniformly on t ∈ [0, T ]. Let

us show that 0 < t 7→ Oε
1(t) is norm continuous. Let t > 0, we have

∥∥Oε
1(t)ϕ−Oε

1(t)ϕ
∥∥

=
∫

R

dµ(v)
∫

R

dx
∣∣∣
∫

R

∫

R

ϕ(y, v′)[Θ(t, v, v′, x, y)Eε(t, v, v
′
, x, y)

−Θ(t, v, v′, x, y)Eε(t, v, v′, x, y)]dydµ(v′)
∣∣∣

≤
∫

R

dµ(v)
∫

R

dx

∫

R

∫

R

∣∣ϕ(y, v′)
∣∣ ∣∣Θ(t, v, v′, x, y)−Θ(t, v, v′, x, y)

∣∣ ∣∣Eε(t, v, v′, x, y)
∣∣ dydµ(v′)

+
∫

R

dµ(v)
∫

R

dx

∫

R

∫

R

∣∣ϕ(y, v′)
∣∣ ∣∣Θ(t, v, v′, x, y)

∣∣ ∣∣Eε(t, v, v′, x, y)− Eε(t, v, v′, x, y)
∣∣ dydµ(v′)

=: I1 + I2.

Since
∫
R

Eε(t, v, v′, x, y)dx ≤ t and

∣∣Θ(t, v, v′, x, y)−Θ(t, v, v′, x, y)
∣∣

≤ C1

|v − v′|(|v
′|σ(v) + |v|σ(v′))|f(v)||t− t| ≤

[
1 +

2d

ε

]
C1‖σ‖∞|f(v)||t− t|

for t ∈ [0, T ] and (t, v, v′, x, y) ∈ Supp Eε, where d = max{|v|; v ∈ Supp f} and C1 = ‖g‖∞,
we get

I1 ≤ T
[
1 +

2d

ε

]
C1‖σ‖∞‖f‖1|t− t|‖ϕ‖. (2.29)

On the other hand, on can establish that
∫

R

∣∣Eε(t, v, v′, x, y)− Eε(t, v, v′, x, y)
∣∣ dx ≤

[
1 +

2d

ε

] ∣∣t− t
∣∣ ,
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so

I2 ≤ C2

[
1 +

2d

ε

]
‖f‖1|t− t|‖ϕ‖, (2.30)

where C2 = e2T‖σ‖∞‖g‖∞. Combining (2.29) and (2.30)

∥∥Oε
1(t)ϕ−Oε

1(t)
∥∥ ≤

[
TC1‖σ‖∞ + C2

][
1 +

2d

ε

]
‖f‖1|t− t| → 0

as t → t. This ends the proof. ¥

Remark 2.12. Assumption (2.28) is fulfilled by the Lebesgue measure on R. We note that
if µ has a compact support, then (2.28) is equivalent to the assumption that µ is diffuse, i.e.
µ{v} = 0 for all v ∈ R.

We now show the optimality of Theorem 2.11.

Theorem 2.13. Let µ be a positive Radon measure on R with compact support V which is
not diffuse i.e. µ{v} 6= 0 for some v ∈ V . We suppose that σ = 0 and that

K : L1(R× V ) 3 ϕ 7→
∫

V

ϕ(x, v)dµ(v).

Then there exists a sequence tn → 0 such that t 7→ R1(t) is not norm continuous at tn for all
n.

Proof. As in the proof of Theorem 2.10 we are led to show that

sup
{ϕ∈Cc(R×V ); ‖ϕ‖∞=1}

∫

V

t∫

0

ϕ((t− s)v + sv, v)− ϕ((t− s)v + sv, v)dsdµ(v)9 0

as t → t, where Cc(R × V ) is the space of continuous functions with compact supports. To
this end, let (ψn)n ⊂ C(V ) (with ‖ψn‖∞ = 1) be a sequence converging pointwise to χ{v}. By
the dominated convergence theorem, for all φ ∈ Cc(R) we have

∫

V

t∫

0

φ((t− s)v + sv)ψn(v)− φ((t− s)v + sv)ψn(v)dsdµ(v) → tµ{v}[φ(tv)− φ(tv)]

as n →∞. Finally

sup
{ϕ∈Cc(R×V ); ‖ϕ‖∞=1}

∫

V

t∫

0

ϕ((t− s)v + sv, v)− ϕ((t− s)v + sv, v)dsdµ(v)

≥ tµ{v} sup
{φ∈Cc(R); ‖φ‖∞=1}

[φ(tv)− φ(tv)].

Choosing a function φ ∈ Cc(R) such that 0 ≤ φ(x) ≤ 1, φ(tv) = 1 and φ(tv) = 0 we get

sup
{φ∈Cc(R); ‖φ‖∞=1}

tµ{v}[φ(tv)− φ(tv)] ≥ tµ{v}

for all t 6= t. ¥
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3 On Dyson-Phillips expansions on arbitrary domains

In this section, we recall a continuity result which holds in arbitrary domains Ω for not neces-
sarily space homogeneous scattering kernels [4, Proposition 4.2, p.77]. The usual continuous
models are covered by this result but the multigroup models are not.
Theorem 3.1. [4, Proposition 4.2, p.77] Let Ω ⊂ RN be an open set and let (H1)-(H2)
be satisfied. Let

t 7→ σ(tv) be continuous for each v ∈ V. (3.1)

Let dµ(v) = dγ(ρ) ⊗ dβ(ω) where v = ρω, ω ∈ SN−1, β is a Radon measure on SN−1 and
dγ(ρ) = h(ρ)dρ (h ∈ L1

loc(0,∞)). Then 0 < t 7→ R2(t) is norm continuous.

Remark 3.2. Actually, Theorem 3.1 holds in Lp spaces (1 ≤ p < ∞). This can be shown
by density arguments and interpolation. This answers partly Problem 3 in [7] about the
relevance of the convexity assumption on Ω.

4 Spectral mapping theorems

Before giving the main results of this section we state some preliminary results. The first
one provides a description of the spectrum of the streaming semigroup and its generator.
Lemma 4.1. (i) Let one of the following assumptions be satisfied:
(A1) σ(v) = σ(−v), the hyperplanes have zero µ-measure and Ω is included in a half-space.
(A2) Ω is the exterior domain of a bounded and open subset O (i.e. Ω = RN\D with D = O).

Then
σ(T ) = σap(T ) = {λ; Reλ ≤ −λ∗}

and
σ(U(t)) = σap(U(t)) = σcrit(U(t)) =

{
µ; |µ| ≤ e−tλ∗

}
,

where λ∗ = lim
t→∞ inf

{(x,v);t<τ(x,v)}
σ(v).

(ii) If Ω = RN then the real spectrum of T i.e. σ(T )∩R is equal to the essential range of −σ
and

σ(T ) = σap(T ) = (σ(T ) ∩ R) + iR,

while
σ(U(t)) = σap(U(t)) = σcrit(U(t)) = etσ(T ).

Proof. (i) First we deal with the approximate spectrum. Following [6] the streaming
semigroup (U(t))t≥0 can be decomposed into three positive semigroups (with independent
dynamics). To this end, define the sets

Ξ1 := {(x, v) ∈ Ω× RN ; τ(x,−v) < ∞},

Ξ2 := {(x, v) ∈ Ω× RN ; τ(x,−v) = ∞, τ(x, v) < ∞}
and

Ξ3 := {(x, v) ∈ Ω× RN ; τ(x,−v) = ∞, τ(x, v) = ∞}}.
Identifying Lp(Ξi) (i = 1, 2, 3) and the (closed) subspace of Lp(Ω× RN )

{f ∈ Lp(Ω× RN ); f(x, v) = 0 a.e. on Ω× RN − Ξi}.
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Then the subspaces Lp(Ξi) (i = 1, 2, 3) are invariant under (U(t))t≥0 and we have

Lp(Ω× RN ) = Lp(Ξ1)⊕ Lp(Ξ2)⊕ Lp(Ξ3),

σ(U(t)) = σ(U1(t)) ∪ σ(U2(t)) ∪ σ(U3(t)) and σ(T ) = σ(T1) ∪ σ(T2) ∪ σ(T3),

where Ui(t) = U(t)|Lp(Ξi) and Ti is the generator of (Ui(t))t≥0 (i = 1, 2, 3). Moreover by [6,
Theorem 7] if dx⊗dµ(Ξ1) > 0, then the (approximate) spectrum of the semigroup (U1(t))t≥0

and its generator T1 are given by

σ(U1(t)) = σap(U1(t)) = {µ; |µ| ≤ e−λ∗1t} and σ(T1) = σap(T1) = {λ; Reλ ≤ −λ∗1}

where
λ∗1 = lim

t→∞ inf
{τ(x,−v)<∞, t<τ(x,v)}

σ(v).

On the other hand, by [6] again we have

s(T ) = ω0(U(·)) = −λ∗ = − lim
t→∞ inf

{(x,v);t<τ(x,v)}
σ(v).

Hence to prove the part concerning the approximate spectrum it suffices to show that As-
sumption (A1) or (A2) implies λ∗1 = λ∗. First, since

E1(t) := {(x, v); τ(x,−v) < ∞, t < τ(x, v)} ⊂ {(x, v); t < τ(x, v)} =: E(t)

it follows that λ∗ ≤ λ∗1. Suppose now that (A1) holds. Let us prove the following implication

(x, v) ∈ E(t) ⇒ (x, v) ∈ E1(t) or (x− tv,−v) ∈ E1(t).

Indeed, if (x, v) /∈ E1(t), then since Ω is included in a half-space τ(x,−(−v)) < ∞, and so
τ(x − tv,−(−v)) < ∞. The last inequality implies τ(x − tv,−v) = ∞ because Ω is included
in a half-space, so that t < τ(x − tv,−v) and (x − tv,−v) ∈ C1(t). Consequently, to each
(x, v) ∈ E(t) we can associate an element (x, v) ∈ E1(t) or (x− tv,−v) ∈ E1(t) with

σ(x− tv,−v) = σ(x, v) = σ(v).

Thus
λ∗1 ≤ λ∗.

Under Assumption (A2), for each w ∈ V there exist a cone Cw containing w and a ball
B(xw, εw) ⊂ Ω such that

B(xw, εw)× Cw ⊂ {(x, v) ∈ Ω× RN ; τ(x,−v) < ∞, τ(x, v) = ∞} ⊂ E1(t).

Hence
λ∗1 ≤ inf

∪w∈V B(xw, εw)× Cw

σ(w) = inf σ(v).

On the other hand it is clear that

inf σ(v) ≤ λ∗ ≤ λ∗1,
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which gives the equality λ∗1 = λ∗. Finally, the part concerning the critical spectrum is a con-
sequence of Theorem 1.4.

(ii) When Ω = RN and the collision frequency is homogeneous, according to [6, Theorem
10], the real spectrum of T is equal to the essential range of −σ(·). By [6, Theorem 9]
σ(T ) = (σ(T ) ∩ R) + iR and σ(U(t)) = etσ(T ). The proof of [6, Theorem 10] shows also that
σap(T ) = σ(T ). For the critical spectrum we use again Theorem 1.4. ¥

We recall

Lemma 4.2. [7, lemma 7] We assume that the measure µ satisfies
∫

D

eiz.vdµ(v) → 0 as |z| → ∞ (4.1)

for all Borel set D ⊂ RN with µ(D) < ∞ and that (H1)-(H2) are satisfied. Then

σap(T ) ⊂ σap(T + K).

Remark 4.3. We know [7, Lemma 5] that under Assumption (4.1), the affine hyperplanes
have zero µ-measure.

We are now in position to give the main results in the whole space.

Theorem 4.4. Let Ω = RN . We assume that the scattering kernel is space homogeneous
and that (H3) is satisfied.

(a) Let N ≥ 2. If (2.1) is satisfied then

σ(V (t)) ∩ {µ; |µ| < e−tλ∗∗ or |µ| > e−tλ∗} = et(σ(T+K)∩{λ; Reλ<−λ∗∗ or Reλ>−λ∗}),

where λ∗ = ess inf σ(·) and λ∗∗ = ess supσ(·). Moreover, if (4.1) is satisfied and if the
essential range of σ(·) is connected then

σ(V (t)) = etσ(T+K).

(b) If N = 1 and if µ satisfy (2.28) and (4.1) then

σ(V (t)) = etσ(T+K).

Proof. From Theorems 1.2 and 2.1 it follows that ωcrit(V (·)) = ωcrit(U(·)). Using Lemma
4.1(ii) we get ωcrit(V (·)) = −λ∗ and, by Theorem 1.1 (c),

σ(V (t)) ∩ {µ; |µ| > e−tλ∗} = et(σ(T+K)∩{λ; Reλ>−λ∗}). (4.2)

On the other hand, when (Ω = RN ), the semigroup (U(t))t≥0 can be extended to a positive
group with

U(−t) : ϕ 7→ etσ(v)ϕ(x + tv) (t ≥ 0).
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The latter is generated by−T and its growth bound is λ∗∗. Similarly (V (t))t≥0 can be extended
to a group with (V (−t))t≥0 generated by −T −K and can be represented by Dyson-Phillips
series. We can show by the same arguments as in Theorem 2.1 that some remainder term
depends continuously on t in operator norm. Thus,

ωcrit(V (−·)) = ωcrit(U(−·)) = λ∗∗

and
σ(V (−t)) ∩

{
µ; |µ| > etλ∗∗

}
= et(σ(−T−K)∩{λ; Reλ>λ∗∗}).

On the other hand µ ∈ σ(V (−t)) if and only if µ−1 ∈ σ(V (t)), so

σ(V (t)) ∩
{

µ; |µ| < e−tλ∗∗
}

= et(σ(T+K)∩{λ; Reλ<−λ∗∗})

and this complements (4.2). We note that Lemmas 4.1(ii) and 4.2, and the connectedness of

the essential range of σ(·) imply

σ(V (t)) ∩ {µ; e−tλ∗∗ ≤ |µ| ≤ e−tλ∗} = et(σ(T+K)∩{λ; −λ∗∗≤Reλ≤−λ∗}),

which ends the proof of (a). We now prove the item (b). Since 0 < t 7→ R1(t) is norm
continuous (Theorem 2.11), Theorem 1.3 implies that

σcrit(V (t)) = σcrit(U(t)) for all t ≥ 0.

Combining this with Lemmas 4.1(ii) and 4.2 we get

σcrit(V (t)) ⊂ etσ(T+K)

which ends the proof. ¥

Remark 4.5. For the special case dµ(v) = dv, the Lebesgue measure on RN , the item (a)
of Theorem 4.4 holds for not necessarily space homogeneous scattering kernels. This can be
shown by using Theorem 3.1.

Before dealing with general spatial domains we need one more preliminary lemma.

Lemma 4.6. Let dµ(v) = dγ(ρ)⊗ dβ(ω) where v = ρω, ω ∈ SN−1, γ is a Radon measure
on (0,∞) absolutely continuous with respect to Lebesgue measure and β is a Radon measure
on SN−1 satisfying

β{ω ∈ SN−1; ω · ω0 = 0} = 0 for all ω0 ∈ SN−1.

Then µ satisfies (4.1).

Proof. A simple compactness argument shows that

lim
ε→0

sup
ω0∈SN−1

β{ω ∈ SN−1; |ω · ω0| ≤ ε} = 0. (4.3)

We have to show that ∫

D

eiz·vdµ(v) → 0 as |z| → ∞
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for all Borel set D ⊂ RN with µ{D} < ∞. The last statement is equivalent to show that
∫

RN

h(v)eiz·vdµ(v) → 0 as |z| → ∞

for all h ∈ L1(RN ; µ). Since the continuous functions with compact support are dense in
L1(RN ;µ) it suffices to deal with a continuous function h with compact support, say with
support included in B(0, R), the ball centred at 0 with radius R.

∫

RN

h(v)eiz·vdµ(v) =
∫

SN−1

dβ(ω)

R∫

0

h(ρ, ω)eiρz·ωdγ(ρ)

=
∫

SN−1

dβ(ω)

R∫

0

h(ρ, ω)eiρ|z|ω′·ωdγ(ρ)

=
∫

{ω∈SN−1; |ω′·ω|≤ε}

dβ(ω)

R∫

0

h(ρ, ω)eiρ|z|ω′·ωdγ(ρ)

+
∫

{ω∈SN−1; |ω′·ω|>ε}

dβ(ω)

R∫

0

h(ρ, ω)eiρ|z|ω′·ωdγ(ρ)

=: I1 + I2,

where v = ρω and z = |z|ω′. From (4.3) it is easy to see that I1 is arbitrarily small for ε small
enough. We fix ε small enough and consider the second term. Since h is continuous and γ is
absolutely continuous with respect to Lebesgue measure,

R∫

0

h(ρ, ω)eiρ|z|ω′·ωdγ(ρ) → 0 as |z| → ∞

uniformly in ω and ω′ such that |ω · ω′| > ε so I2 → 0 as |z| → ∞. ¥

Theorem 4.7. Let Ω ⊂ RN be an open set and let (H1)-(H2) be satisfied. Let dµ(v) =
dγ(ρ) ⊗ dβ(ω) where γ is a Radon measure on (0,∞) absolutely continuous with respect to
Lebesgue measure and β is a Radon measure on SN−1. We assume that (3.1) is satisfied.
Then

σ(V (t)) ∩ {µ; |µ| > e−tλ∗} = et(σ(T+K)∩{λ; Reλ>−λ∗}). (4.4)

Moreover, if β is such that β{ω ∈ SN−1; ω ·ω0 = 0} = 0 for all ω0 ∈ SN−1 and if Ω satisfies
one of Assumptions (A1) or (A2), then

σ(V (t)) = etσ(T+K) ∪ {0}.
Proof. As in the proof of item (a) of Theorem 4.4, the use of Theorems 3.1, 1.2 and 1.1,
and Lemma 4.1(i) gives (4.4). On the other hand, if Ω satisfies one of Assumptions (A1) or
(A2) then by Lemmas 4.1(i), 4.2 and 4.6 and the inclusion etσap(T+K) ⊂ σap(V (t)) we obtain

{µ; |µ| ≤ e−tλ∗} ⊂ etσ(T+K) ⊂ σ(V (t))

which ends the proof. ¥
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Remark 4.8. In bounded geometries, the spectral mapping theorems are consequences
of compactness results obtained under the assumption that the collision operator is ”weakly
compact with respect to velocities”, where the weak compactness is ”collective” with respect
to the space variable [3, 5]. This suggests that (H1)(H2) could probably be replaced by a
collective weak compactness assumption.
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