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Abstract

This work deals with spectral mapping theorems for neutron transport semigroups
in unbounded geometries and L' setting. The mathematical analysis relies on harmonic
analysis of certain measure valued mappings related to Dyson-Phillips expansions and on
some functional analytic results on the critical spectrum [2, 8].

1 Introduction

The investigation of spectral mapping theorems for neutron transport semigroups

( et(TJrK))tZO
in unbounded geometries was initiated recently by the authors in the context of LP spaces
with 1 < p < oo [7], where T' and K represent respectively the streaming and the collision
operators. The mathematical analysis is based upon two ingredients:
(a) Some functional analytic results on perturbation theory of the critical spectrum of Cp-
semigroups [1, 2, 8].
(b) The norm continuity of

0 <t ot TH+E) _ T

Y

i.e. in the operator norm topology. The proof of (b) is based on Fourier integral analysis
of e!T+E) _ ¢! in the case p = 2 and on interpolation arguments. The present paper is
devoted to the limiting case p = 1 which is not covered by [7] and which turns out to be the
physical case for neutron transport. Besides the use of the properties of the critical spectrum
of perturbed semigroups [2], our mathematical analysis relies on different tools. Moreover, we
obtain very precise results which are different from those given in [7]. Before explaining the
content of this paper, it is useful to recall some facts on the critical spectrum of Cy-semigroups
[1, 2, 8]. Let X be a Banach space and 7 = (U(t)):>0 be a strongly continuous semigroup on
X. We consider the Banach space X := °°(X) of all bounded sequences in X endowed with
the norm

[Z]| = sup [|zn ||
neN



where T = (z,),cn - We extend the semigroup (U(t))¢>o to X and obtain a new semigroup
7= (0() _ defined b
T ( (t) 20 efined by

Ut)z := (U(t)xn) ey for T = (25),cN -

Let X, be the subspace of strong continuity of 7
X, = {% €X; E?SHU(}L)E:’— || = 0} :

This subspace is closed and (ﬁ (t))t>0-invariant. On the quotient space X = X /X, , the
semigroup (ﬁ (t)>t20 induces a quoti;nt semigroup T = ((7 (t))tzo given by
Utz =U(t)T+ X, for T=7+ X,.

The critical spectrum of U(t) is then defined as

oerit(U(t)) = a(U(1))
while its critical spectral radius is defined as

rerit(U (1)) := (U ().
Moreover, the critical growth bound is defined as

werit (U (7)) = wo(U (1))

where wy is the usual growth bound (type). We have:
Theorem 1.1. [8] Let (U(t))i>0 be a strongly continuous semigroup on a Banach space X
with generator T'. Then:

(a) oerit(U(t)) C o(U(1)),

(b) reri(U(t)) = ewerit(U ))tv

(c) a(U®))\{0} = €T Ugeris (U 1))\ {0},
(d) wo(U(+)) = max {s(T),werit(U("))} -

Consider now the perturbed semigroup (V' (t));>0 generated by 7'+ K where K is a bounded

operator:
t) =2 Ujt)
0

where ,

Uo(t) = U(t), Ujra(t) = /Uo(t— s)KUj(s)ds (j = 0). (1.1)
0

The following theorem provides a sufficient condition for the stability of critical growth bound.



Theorem 1.2. [2] Let (U(t))t>0 be a Co-semigroup with generator T and let (V(t))i>0 be
the Co-semigroup generated by T + K. If for some k € N

0 <t Ry(t):= iUi(t)
i=k

is norm (right) continuous, then
werit(V (1) = werit(U(+)).
The stability of critical spectrum is the subject of the next theorem.

Theorem 1.3. [2] Let (U(t))i>0 be a Cy-semigroup with generator T and let (V(t))i>0 be
the Cy-semigroup generated by T + K. If for some tyg > 0

to <t Rl(t) = V(t) — U(t)
is norm (right) continuous, then
Ucrit(v(t)) = Ucm’t(U(t)) (t > tO)-

We give a sufficient condition for recognizing the critical spectrum. We first recall that the
approximate spectrum of T is defined by

oap(T) :={X e C; Ian), C D(T), ||zn|| =1, || Txy — Azp|| — 0 as n — oo} .

Theorem 1.4. [1] Let (U(t))i>0 be a Co-semigroup with generator T. Let (Ay)n C 04p(T)
be such that lim |[Im\,|= oo and lim e = pu. Then p € ot (U(t)).
n—oo n—oo

We now present the neutron transport semigroup. Let Q € RY be an open set and let
© be a positive Radon measure on RY with support V. We refer to V as the velocity space.
The streaming semigroup is given by

t
—/ o(x — sv,v)ds
0

Ut): L'(Qx V)3 pre p( — 10, 0) Xjr<r(aw)) € L' (Q X V),

where 7(z,v) = inf{s > 0; = —sv ¢ Q} and o(-,-) € L>®(Q2 x V) is the collision frequency.
Here Q x V is endowed with the product measure dz ® du(v). We denote by T the generator
of (U(t))+>0. The collision operator is the (partial) integral operator

K:L'QxV)3 ¢ /k(m,v,v')gp(w,v’)du(v’),
1%

where the scattering kernel &(-, -, -) satisfies the estimate

[0 ldute) € L2(@ x V)
Vv

ensuring the boundedness of K in L'(£2 x V). The neutron transport semigroup is the Cp-
semigroup generated by 7'+ K. For all the sequel, the collision operator is assumed to be



compact "with respect to velocities”, where the compactness is ”collective” with respect to
the space variable. More precisely:
(H1) The family

{ [ a0 o)o@)dut) ve @ pe L) leluw <1}
%4

is relatively compact in L'(V).
(H2) For each ¢ € L*°(V), the family

{/k(a;,v’,v)z/}(v’)du(v'); x € Q}

\%

is relatively compact in L>=(V).
We note that under (H1) and (H2), K can be approximated in the norm operator topology
of L(LY(2 x V)) by collision operators with separable kernels:

S ail@) fi(w)gi (o), (1.2)

el

where o;(-) € L®(Q), fi(-) € LY(V), gi(-) € L=®(V) and I finite (see [7]). We point out
that when the scattering kernel is space homogeneous, (H1) and (H2) reduce simply to the
compactness of the integral operator

V)5 / k(v, o) (o) dp(v) € LM (V).
1%

In this paper, the collision frequency is assumed to be space homogeneous, i.e.
o(x,v) =o(v).

Our paper is organized as follows: Section 2 is devoted to the neutron transport semigroup
in the whole space (2 = RY) with space homogeneous scattering kernels, i.e. k(z,v,v') =
k(v,v"). We show that if there exists o > 0 such that for all ¢ > 0 there exists ¢ > 0 such
that
sup 1@ pf(0,0); o] < e, ]| < e (v =) - e < e} < e
ecSN-1

then

0 <t Ri(t) € L(L'(Q x V) (1.3)

is norm continuous where j depends on o and N. The proof is quite technical and is given in
several steps: By a density argument, we can restrict ourselves to the separable case (1.2). In
this case, the terms of the Dyson-Phillips expansion (1.1) are shown to be essentially iterated
convolution of Radon measures depending on time ¢t. In particular, the norm continuity of
(1.3) amounts to the fact that such measures depend continuously on ¢ with respect to the
total variation norm. We show that for N > 2, regardless of the choice of the velocity measure

M



is mever norm continuous. On the other hand, for NV = 1, we show that

0 S t — et(T+K) . 6tT
is norm continuous if and only if y satisfies

sup p{[v' —e,v" +¢|]} —0ase—0.
v'eR
In section 3, we deal with general spatial domains and not (necessarily) space homogeneous
scattering kernels under the assumption that the velocity measure u is ”absolutely continuous
v »

in speed |v| but arbitrary in directions o and prove that

OStHRQ(t)

is norm continuous. We note however that such an assumption on u covers the classical
continuous model (du(v) = dv) but not the multigroup model (Lebesgue measure on spheres).
Section 4 is devoted to spectral mapping theorems. We determine first the critical spectrum
of the streaming semigroup; we essentially complement some results given in [6, 7]. We derive
from the results of Section 2 spectral mapping theorems in the whole space for general velocity
measures and space homogeneous scattering kernels. Similarly, we derive from the results of
Section 3 a spectral mapping theorem for a restricted class of velocity measures but for general
spatial domains and scattering kernels.

The authors thank the referee for helpful remarks and suggestions.

2 On Dyson-Phillips expansions on the whole space

In this section devoted to the case Q = RY, we assume that the scattering kernel is space
homogeneous and that

(H3) LY (V)3 o [k(v,v")e(v)du(v') € LY(V) is compact.
v
2.1 Arbitrary dimension

Theorem 2.1. Let Q@ =RN. Let uu be a positive (not necessarily finite) Radon measure on
RN and let (H3) be satisfied. We assume that there exists a > 0 such that for all ¢ > 0 there
exists ¢ > 0 such that

sup 1@ p{(v,v); ] < ¢, [0 < e (v —0') e < e} < e (2.1)
ecSN-1

Let p1 be the smallest integer such that py > (al_l) (% + 1) . Then
0 <trs Ri(t) € L(LYRY x V)
is norm continuous for all j > 2p1.

Remark 2.2.  Condition (2.1) is obviously satisfied by Lebesgue measures on open sets or
on spheres.



The proof of Theorem 2.1 is quite technical and is given in several steps. We observe first
that U; = [UK} «U (j > 1) where * is the convolution operator which associates to strongly
continuous (operator valued) mappings

fr9: 10,00 = L(LYRY x V)

the strongly continuous mapping
t
fxg:[0,00[ >t /f(t — 5)g(s)ds € L(LY RN x V))
0

and [UK) := UK % --- % UK (j times). Here U denotes the mapping 0 < ¢t — U(t) and
UK :0<tw U(t)K. We note that: f,g+— fxg is associative. We recall that 0 < ¢+ R, (t)
is norm continuous if and only if 0 < ¢t +— U,,(t) is so [4, Theorem 2.7, p. 18]. Moreover,
if 0 <t~ [UK]™(t) is norm continuous then 0 < t — Up,(t) is also norm continuous. By
the same arguments it suffices to show that 0 < ¢t — K [UK]™ ' (¢) is norm continuous. By
density and linearity we may restrict ourselves to

KlU*KQU* *Km_lUKm

where K; (i = 1,--- ,m) has the form

L®Y % V)59 [ fi(0)g)elav)du(e) € LR x V)
1%

where f;(-) € LY(V) and g¢;(-) € L>(V). By density again and decomposition we can suppose
that f; and g; are nonnegative, and f; are continuous with compact supports. We can then
assume without loss of generality that u has a compact support. Let

M; : LYRY xRY) 5 ¢ — /gp(az,v’)gi(v/)du(v’) = / o(z,v")dp;(v') € LHRY)
RN RN

where p; = g;u. We have
KiM; = ||pal| K

and
m—1
KU« KoU -4 Ky UK = [ Ml ™ Ky(MyU Ky % MyUKs s+ 5 My 1 UKpy).
=1

The latter operator is described in:

Lemma 2.3. Let m > 2. There exists a finite Radon measure 3™ (t) on RY such that
MlUKQ koo X MmUKerl(p = ﬁm(t) * Merl(p.
Proof. We first prove that

MUK 10 =1 * M1



where 7! is a finite Radon measure on RY. Indeed,

MUKiap = [ fia@g)e O Mog(o ~ to)duo)
= [ mo)e O Moo~ to)du)

RN
= / Mip1o(z — y)dni(y) = np * Mit1¢
RN

where 7} is the image of =" h;(v)du under the dilation v — tv and hi(v) = fir1(v)gi(v).
Observe that the mapping 0 < ¢ — ni € M(RY) (the space of finite Radon measures) is weak
star continuous, i.e., for any ¢ € L'(RY),

0<t (ilp) = [ oo~ to)e "oy
RN

is continuous. We have

MlUK2 *MQUK;;(,D == /MlU(t—S)KQMQU(S)Kg(,DdS

t

_ / 0 % My(MaU(s)Kp)ds

0
t

= /ntls x Ma(n2 * Mzp)ds
= el / nl % (1« Myp)ds

= el / (n, 12 * Myds
t

— el [ [ nly e nds] 5 Mg
0
= B%(t) * M3y

where the integral
= / o) (2.2

is taken in the weak star sense, i.e.

(5*(t) @—mu/ xmR, o) ds.



Now, suppose that
MUKs %+ x My, \UKpo = ﬂmfl(t) * Myno.

Then

[MlUKQ**MmUKerl] (t)gO = [MlUKQ**MmflUKm} (t—S)(M U() m+1§0)d
Bt = ) % My (MU (8) K a1 ds

Bt — 8) % My (] % Myi1)ds

Il
S O O~

t
. / Bt — ) (1" % Mis10)ds

=l /ﬂmlt—S*nst]*MmH@

=t B7(t) * Mm+190
where the integral
t
") = Nl [ 57N~ 5) s (23)
0
is taken in the weak star sense, i.e.
(57 (1), ) = mmn/ (87Nt~ s) el ) ds.
Then (™(t) is defined inductively by (2.3) which ends the proof. [

Thus, to prove Theorem 2.1, it suffices to prove:
Lemma 2.4. Let p; be the smallest integer such that p; > "‘“(N +1). Then forp > p;
0 <t B%(t) e M(RY)

is continuous, where M(RN) (the space of finite Radon measures) is endowed with the total
variation norm.

The proof of Lemma 2.4 is given in several steps. Before doing this, as in the proof of Lemma
2.3, we can show, for p > 1, that

t
B22(t) = [lpzpr | / B0 (1~ s) % 52 120(s)ds (2.4)
0



where

U (t) = HumH/m s R ds.

Let us show first that for p large enough 5%P(t) is a function, i.e. 3?P(t) is absolutely continuous

with respect to Lebesgue measure.
Lemma 2.5. Let py be the smallest integer such that pg > (O‘H)

have 3?P(t) € L2(RN) N LY(RYN) for all t € [0,T).
Proof.  We start with 5%(¢) (see (2.2)). We have

liall ™ 20 E)
= 0" [ @

0
t

= en 2 [[ [erta o[ [ e tanw)]as

0 RN RN
t

_ (27T)N/Q/[/ei(ts)u-ge(ts)o(v)hl(v)dﬂ(v)} [/eisv’.gesa(v’)hQ(U/)dﬂ(v/) ds
0 RN

RN

Then for all p > py we

t

_ (27T)_N/2 / / [/e—i(t—s)u~§e—(t—s)a(v)e—isy’.ge—sa(v’)ds} hl(’l))hQ(’Ul)d,U(U)d,U:(U,)-
RN RN 0
Introducing polar coordinates ¢ = |£| e, e € SV !, we decompose the last integral as

t

// /e—i(t—s)y{@—(t—s)a(v)e—isU’.ge—sa(y’)ds} hl(’l))hQ(’Ul)d,U('U)d,U('U,>

[(v/—v)-e|[<e O
t

/ [ [ [t s s by (o) () (o)

[(v/—v)-e[>e O
where € > 0 is arbitrary. We have

t

// /6 i(t—s)v-§ o —(t— s)a(v)efisu’.gefsa(y’)dS:| hl(’l))h2<’l)/>d,ll('0)d,u(v/)

[(v/—v)-el<e O
< - bl [ dutv)aute).
[(v'—v)-e|<e
We estimate the second integral

t

// /ei(ts)v-ée(ts)U(v)eisv’-éeso'(v/)ds hy (U)hg (v')d,u(v)d,u(v’)

[(v/—v)-e|>e O



—itv-§ ,—to(v)

()| dp(v)du(v')

‘e—itv’fe—ta(v’) —e
|h1 (U)hg

// !Z(U—v) §+o(v) —o(v)

<
[(v'—v)-e|>e |h h
2|h a2(v
Sl(,//|> [OE T RARA
_ 2lmllsllhelh
hi(v)ho(v')|d .
|£| //‘ Jha()] dp()dn() < ==
(v'—v)-e|>e
Thus
o - - w2 lhalli][hally
B2O©)] < @) 2 ||| (Te2T W [y holl dpu(v)dp(o) + LR,
Let 0 <7< 1and e = ¢ then
BSE] < @m) N2l (TN [hyhsl| o + 2 [ Balls 1Rzl ) (@(€) + b(E))
— Cy(a(€) +b()),
where
1
a€) = swp p@p{o); [ —v) e[ <[¢ 7T} and b(€) = ——.
ecSN—-1 |£|
Consider
GPL20(1) = [y | / n st ks

+0(£)){2.5)

as previously we can prove that
(2m) N2y | (TN || By 1oyl + 2 [ Pap-1ll1 | 2pll, ) (a(€)

|82120(1) (€)] <
Now let us prove by induction that there exists Cp, > 0 (depending only on p) such that

|522(8)(€)] < Cpla(€) +b(E))? for all ¢ € [0, ]

Suppose that there exists Cp,_1 > 0 such that
(&) £ Cp-1(al§) +b(&))P~! for all t € [0,T]

EZ0
Then by (2.4) and (2.5) we have
Hmpflll_l!ﬁ%’t )(©)]

< (n / 2000 = )2 120(5)(€) | ds
0
< 1Cp1(a(€) + P Nl (TN gyl + 2y gl (a(€) + B(6))

10



Then .

[BR()(©)] < Cpla(€) + (&))" for all t € [0,7] (2.6)
where Cp 1= [[2p-1 | [12pl| T Cpmt (Te2171 [ gy hap e + 2oyl 1B 1) ) Put 7 = 1
(clearly 0 < 7 < 1) using (2.1) we obtain
/ P
c 1 P < 2PCp(max{c/, 1})

e Tl S €[ TFa

B2(8)(€)] < Gy

Hence 6/27’\(15) € L2(RN) for all p > pg > W and for all ¢ € [0,7]. By Parseval’s identity
we have 3?P(t) € L2(RY) for all p > po > W and for all ¢t € [0,T]. Since 3%(t) is also a
bounded Radon measure on RY we conclude that 3%°(t) € L*(RY). [ |

Now, the proof of Lemma 2.4 amounts to
0 <t ?(t) € LY(RY) is continuous. (2.7)
We deal first with the continuity in L? norm.

Lemma 2.6. Let py be the smallest integer such that py > 2t (N +1). Then for all p > p1,
10,T) >t — B2°(t) € L2(RY) is continuous.

Proof. We note the following elementary estimates which will be used repeatedly in the
sequel. There exists C' > 1 such that

|emitvéto(v) _ omitvé—to()| < Cmax{1, [¢[}|t — 7] (28)

and _ _
‘efit(v*v/)-éft(o(v)*U(U’)) _ e~ t(v=0")E—t(o(v)—o(v)) <

(2.9)
for all ¢, £ € [0,77], for almost all v, v € V and for all £ € RV,

In a first step we prove inductively that

132 ()(€) — B ()(€)] < C[t — 7| €] (a(€) + b())”

for all & such that || > 1, where C, is some constant which depends only on p. We recall
that 1
a(€) = sup p@p{(v,v); |(V'=v)-e| <€} and b(E) == ——.
ecSN-1 |€|

Using the expression of 5/2\(15)(5) given in the proof of Lemma 2.5 we have

sl = (BB} (6) — POE))
— (2m) V2 / / B (0)ha () dpu(0) dp(v')

RN RN

t t
/6 i(t—s)v-E—(t— s)o’(v) —isv'-£— sa(v’)ds /6 i(t—s)v-E—(t— s)a’(v)e—isv’~§—sa(v’) ds
0 0

11



— (2n) / / () ha () dpa(0)dpa (')

RN RN
t

—ztvf to(v) /6 is( (U/)_U(v))ds
t

+(e—itv~§—t(7(v) o e—ifv{—fa(v)) e—is(v’—v)-E—S(U(U’)—U(U))ds] ) (210)

o,

Introducing polar coordinates ¢ = |£| e, e € SV~!, we decompose the last integral as
J[ meme)due)au)
[(v"—v)-el<[¢] 77

—ztv £—to(v (o' )—U(U))ds

w\{*

t
+(e—itv~§—t0(v) o —ztv§ to( v) /6 is(v'—v)-E—s(o(v')— U(v))ds
0

+ / / b (0)ha () da (v) dpu (')

(v —v)-e|>[¢]77
t
,ztvf ta U /e (’U )—o‘(y))ds
t
€
+(€—itv-§—ta(v) N —ztv§ to(v / —is( (v’)—a(v))ds
0
= 1+ I
Clearly
t
| // I (o) a0 (o) (o Y060 / 500y €l -0 g
|(v' —v)-e|<[¢] =7
< 62T||0'||oo|t // |h1 hg ‘dﬂ dﬂ
(v —v)-e[<[¢]77
< Tl thhzlloo |t —t|a(€). (2.11)
Using (2.8) we obtain
// )d,LL( )dlu(vl)(e—itv-ﬁ—ta(v) _ e—ifv-ﬁ—fcr(v))
(v'—v).el<[¢|™T

12



X
o,

e—z‘s(v’—v)-s—sw(v')—a(v))ds‘

< Clgt- t\TeZ‘T”U” // |h1(v)ha(v")| dp(v)dp(v
(v’ ve\<|§\
< Tl thhQHoo &) 1€l |t — . (2.12)

Then adding (2.11) and (2.12) we get
L] < (1+CT)eT Mol | hho|| a(e) |66 -7 Vgl > 1. (2.13)

Consider I,. First we have by (2.9)

t

// )d,u( )d'ul(v/)efitv-gfta(v) /eis(v/v){s(a(v’)a(v))ds‘
(v —v)-el>[¢77 t
) — i M) _ (DT
= // ‘ 1(v)ha( ’ ’ i(v—1)-€+o(v)— o) ‘ p(v)dp(v)
[(v'—v)-e[>|¢]7" ‘ ’
ClEllt—t ,
< —d v)du(v
< // o) e dn ) ()
[(v/—v)-e[>]¢]7" | ‘
ClElje—t
< / / )] “2 = ) da()
| €177 1]
[(v'—v)-e[>|¢]7"
< Ol sl b(€) Il |t — 7. (2.1

Similarly, applying (2.8) we obtain

/ / (v)dp(v)dp(v') (e~ itvEto @) _ gmitvé—io(v))

(v'—v)-e|>|¢|77

o

% e—iS(v’—v)f—S(o(v’)—a(v))ds‘
< // ‘hl h2 ’ ‘e—itv-ﬁ—ta(’u) i e—ﬁvf—fa(v)
(' —v)-el>[¢] " i
it —0)-ET(o(v))~o(v)) _ 1 i
X‘i(v—v’)-§+a()—a(v) (v)dpu(v')
< (2Tl 4 1)C||ha |1 || P2l B(E) (€] [t — F] - (2.15)
Thus adding (2.14) and (2.15)
|Io] < (27Nl 4+ 2)C|Ry |11 [[h2ll1b(€) 1€ [t —F  WI¢] > 1. (2.16)

By (2.13) and (2.16) we have

P

|82(6)(§) = B2(D)(E)] < CT(a(©) + (&) ¢l |t =7 Vgl =1

13



where CF := (2m) V2| 2| | (1 4+ CT)e?Tloll |h1hal| o + (e?Tlolloe 2)C||h1||1\|h2||1]. Let us
show that there exists C) which depends only on p such that

1B2(0)(€) — B2 (E)(€)] < C €] [t — T|(a(€) + b(e)P for [¢] > 1 and t,7 € [0,T].

Suppose that
-1 (1)(€) — B2e-D(E)(E)] < Oy [€] £ — 7| (a() + b(€))P )

for || > 1 and ¢, € [0,T] . Thanks to (2.4), (2.5) and (2.6) we have

lap | 7B (0)(€) — B (B)(©)|
< (@mVe / 620D (1 — 5)(€) — B0D(T — 5)(€)]| 52 120 (5) () |ds
0

+(2m)2 / 5207 (1 — 5)(€)]| 52120 (5)(€) | ds

< ;i llggll (T2 oy ihoyl o, + 2z 1Ryl ) [€]]¢ 7] (al©) + (&))"

+Cp1]| papl| (T€2T”””°O [hop—1hopll o + 2Hh2p—1\|1Hh2le) |t —T|(a(&) + b(£))P.
(2.17)

Then .
6% (8)(€) — B2 (E)(€)| < Cp €] [t — #[(al€) + b())P

for |¢] > 1 and ¢, € [0, T] where
Cy 1= Nz Mgl (T2 gy-ihap o, + 2lhzp-1 1 2l ) (TCoy + Cpoa) -

We are going to estimate
|52()(€) — B2#(D)(©)] for €] < 1.

Using (2.8) and decomposition (2.10) we obtain
(2m) N o] (271N s -+ TOTIN 1) |2~ 7]

B0)E) - PDE)] <
= C*l{t—ﬂ for [¢] < 1.
(2.18)

Inductively we can obtain
|32(£)(€) = B ()] < Cup|t — 7 for [ <1

where C,, > 0 depends only on p. Considering (2.17), choosing 7 = - and using (2.1) and

1+«

(2.18) we obtain
[ e - e
RN
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IN

/\@( (D) \d€+/\62p B (D)) de
l€]<1 |£1>1

2 1t = 1[fuol(B(0, 1)) + (2°C: (max{c, 1})P)2[t — 7|2 /|5|2(1—p1ia>d5

IN

l§1=1
¢’ [Cfpvol(B(O, 1)) + (2°C;i(max{c, 1})7)? / ¢|20-PrEs) dg]

[€1>1

IN

for p > p1 > 22 (& + 1) where vol(B(0,1)) is the volume of unit ball of RY. [ |

Before proving (2.7) we need the following two lemmas.

Lemma 2.7. Let v be a positive Radon measure on RN with compact support and (B(t))e=0
be a family of positive measures uniformly bounded in t € [0,T] (for all T > 0) and such that

B){RN\B(0,n)} — 0 asn — oo (2.19)

uniformly in t € [0, ] for all § > 0 where B(0,n) is the ball centred at 0 with radius n. Then
t
/ﬁ (t — 5) * vsds{RM\B(0,n)} — 0 as n — oo
0

uniformly in t € [0,T] for all T > 0 where vs is the image of v under the dilation v — sv.

Proof. LetT >0,e>0andtec[0,7]. Set M = sup |B(t)|. By definition we have
t€[0,T]

B(t — 5) * v RN\ B(0,n)} = / / Xev\ (o (@ + )dva(@)dB(t - )(1)

RN xRN

= [ (= o+ BN\B(0.m)} v, (@)
RN

_ / B(t — 8){—sz + RN\ B(0, n) Yu(x). (2.20)
RN

We note that

Bt — s) l/st{RN\B(O, n)}

o O —0

= /ﬁ (t—s *ysds{RN\B(O n)}+ /ﬁ t—s) *vst{RN\B(O n)}
0

+ [ B(t —s) * veds{RN\B(0,n)}
/

= L1+ 1L+ Is.

15



From (2.20)
IL <eMl|v|| and I3<eM|v|. (2.21)

On the other hand, there exists a compact set C. such that
Supp vs C C. for all s € [eg,T],
where Supp v denotes the support of v. It follows that there exists an integer ng such that

—z +RM\B(0,n) c RM\B(0, g)

for all n > ng and for all z € C. and then

I < / / ﬂ(t—s){RN\B(O,g)}dus(x)ds

e RN

sup B(r){RY n [ vs(z)ds
< s 50)(E \B<o,2>}E/R[d (z)d

< Tlv| sup B{RM\B(O, 1)}
rele, T
Thanks to (2.19) there exists an integer n; > ng such that
I, <Tlv|e (2.22)
for all n > ny and for all ¢ € [¢,T]. Using (2.21) and (2.22) we obtain
L+ 1+ I3 <e|v||(2M +T)

for all n > ny and t € [0, 7. [ |

Lemma 2.8. For all m > 2 we have
B ({RM\B(0,n)} — 0 as n — oo (2.23)
uniformly in t € [0,T) for all T > 0.

Proof.  Taking advantage of the expression (2.3), i.e.

t
B (t) = |l uml| /ﬂml(t —5) xn"ds
0

we apply inductively Lemma 2.7 to show (2.23). Indeed, we first observe that for 7' > 0

sup [|B"(¢)]| < o0 (2.24)
te[0,7)

which is true for m = 2 since (2.2) shows

182 < T2l lhall1]lh2]lx
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for t € [0,T]. The proof of (2.24) follows by induction. Let us show that 7! satisfies (2.19).
Since 1! has compact support, there exists a compact set Cs, which depends only on §, such
that Supp n! C Cjs for all s € [, %] Thus Supp 1! C Cs C B(0,n) for n large enough and
then

1
nHRNM\B(0,n)} =0 for all 5 € [, S]
Combining this with the uniform boundedness of (n!)s>0 and Lemma 2.7 we get
B(H){RM\B(0,n)} — 0 as n — oo (2.25)

uniformly on compact intervals of [0, +oo[. Now, using (2.3), (2.24) and (2.25), it is easy to
end the proof by induction. |

We are now ready to prove Lemma 2.4.

Proof of Lemma 2.4 It suffices to show (2.7). Let £ > 0 and ¢ > 0. From Lemma 2.8
there exists ng such that

B2 () {RN\B(0,n9)} < % uniformly in ¢ € [t — 0, + 4]

(with a suitable choice of §). Then

/ }52171 ﬂ2p1 ‘dw
< [ row-frowas [ o) - @)
B(0,n0) RN\B(0,n0)
< eoBO.E [ [ 19 0 - 5 @) ]
B(0,n0)
v [ @ / 52 (F) (o)
RN\ B(0,n0) RN\B(0,n0)
1
< [vol(B(0,n0)) % /‘521’1 ﬁ2p1 ’ dx} 4 % +§
for t € [t — 6,4 0] . By Lemma 2.6 there exists d; > 0 such that
2p1 2p1 &
[/ |8 - (@)] da:} ~ 3wol(B(0,ng))
RN
for ¢t € [f— d1,t+ 51} . Thus
/ ‘527’1 — B%PL(%) (z)|de < e
for t € [ o1, t+ 51] which ends the proof. |

17



Remark 2.9. It is an open problem to prove Theorem 2.1 when Q # RY or when the
scattering kernels are not space homogeneous.

In the LP theory (1 < p < 00), 0 <t + Ry(t) is norm continuous [7]. We now show that
this is never true in L!.

Theorem 2.10. Let p be a positive Radon measure with compact support V- # {0} and let
Q=RN with N >2. Let 0 =0 and

K:L'RY x V)3 ¢w— /gp(:n,v')d,u(v').
4

Then there exists a sequence t, — 0 such that t — Ry (t) is not norm continuous at ty, for all
n.

Proof. If (for some T > 0) ]0,7] > t — Ry (t) is norm continuous, then |0,7] > ¢ — Uj(t)
would be also norm continuous [4, Lemma 2.3, p. 16]. Thus it suffices to prove that 0 < ¢ —
Ui (t) is not norm continuous. Let ¢ > 0. We recall that

t
Ui(t) = /U(t —s)KU(s)ds.
0
To show that 0 < ¢ — U (t) is not norm continuous at ¢ it suffices to show that

0<t—U(t):= [ Ult—s)KU(s)ds

o,

is not norm continuous at ¢. Let
Ly :={av; a€R}
be the line with direction 7 € SN~ Without loss of generality, we may assume that

p{ L} <|lull- (2.26)

Indeed, if for some v € SN~! u{Ly} = ||p||, then for all v € SN~ with v # ¥ we have
Ly N Lz = {0} and

el > w{lzULg}
= p{Lz} + p{lz} — p{0} = |lull + p{Lz} — pn{0}
p{Ls} < p{0} < ||p|

since p is not supported by {0}. Let (f;); C L*(R x V) be a normalized sequence converging
in the weak star topology of measures to the Dirac mass 0(gz) = 0z=0 @ dy=5. It is clear that

IG(6) = i@l > supll0(0)f; = Cu(@; |
j€
= sup sup <ﬁ1(t)f] - ﬁi(i)f],tp>
JEN {peCc(RV XV);  [lplleo=1}
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> sup oo (U1 (8) f5 — UL (D) £, ),
{p€eCc(R¥xV); |l¢llco=1}

where C.(RY x V) stands for the space of continuous functions with compact supports. On
the other hand (Ui () f;, ¢) is equal to

/ dzdp(v)p(x,v) /tds/f] (x — (t — s)v — sv', v )du(v)
0 \%4

RN xV

t
= /du /du /ds Fily, o)y + (t = s)v + sv', v)dy
0

1% \%4 RN

— / dydu(v') f;(y,v") / du(v)
\%4

RN xV

. / du(v)
174

oy + (t — s)v+ sv',v)ds

S —

o((t = s)v+ sv,v)ds

o,

as j — 00 so

t

1T () = Th @) > sup /du v /cp ((t— 5)o+ 7, 0) — (- )0+ 57, v)ds.
{p€C(RYXV); lplloo=1} 7 9

Our goal, now, is to prove that for every ¢ # ¢ the last supremum is bounded away by a

positive constant independent of t. Let

iy :={tv+s(v—v); sel0,t}

be a segment starting at tv with direction v — v. For ¢t # t and v ¢ Ly the segments I'; ,, and
I';, are disjoint. Let

t,v

Liy = {tv+s(t—v); seR}
be the line passing through tv and with direction 7 — v (it contains I't ). Note that L;, and
Ly, are disjoint if v ¢ Ly and are identical otherwise. Define the function ¢" on RN x (V\Lyz)

by:
d(l‘, Lf,v)

d(x, Lty) + d(x, Lg,)

¢ (z,0) =
where d(x, Ly ,) = yélg,u |z —y| = slglg |z — tv — s(v — v)]| is given by
d(z,Ly) = |x —tv — (x — tv, 5 — )7 — v| 2(T — )|
where (-,-) denotes the scalar product in RY. Then ¢! is continuous on RY x (V\ L) and

1 for zeTl
t _ tv
@ (z,0) = { 0 for =xely,. (2.27)

19



Let 6. : V — R be a continuous function satisfying 0 < 0.(v) < 1, 6-(v) = 0 if v € C! and
0-(v) = 1if v ¢ C2, where

Cl=vVn{veRY; d,Ly) < %}

and
C?=vn{veRY; d(v, Ly) <e}.

The function 6.¢! : RN xV 3 (z,v) — ¢f(2,v)0(v) is continuous in RY x V. Let ¢ € (RN
be a function verifying 0 < ¢ < 1 and ¢ = 1 on the compact set U(t,v)eE I't ., where & =
[t —6,t+ 8] x V (for some fixed § > 0). Using (2.27), the function

e RY X V'3 (2,0) = ¢ (2,0)0:(v)9 (@),

which is in GC(RN x V') because ¢ has compact support in RN and V is compact, satisfies

PL((t — s)v + s0,v) — ¢L((T — 8)v + 50, v)dsdu(v)

(A
o\w
-
o o
=
|
=
4
+
[Va)
2
=
QL
[V2)
S
=
=

Finally, since u{V\C2?} — u{V\Lz} as ¢ — 0, it follows from (2.26) that
|01 (1) = Th@)]| > Tp{V\ Lz} > 0

for all t # t. [

2.2 The dimension one

The one dimensional theory (N = 1) is very different. We have:

Theorem 2.11. Let u be a positive Radon measure on R satisfying

sup u{[v' —e,v" +¢e]} - 0ase—0. (2.28)
v'€R

We assume that (H3) is satisfied. Then

0<tr Ri(t) € L(L'(R x R))

18 norm continuous.
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Proof.  We recall that 0 < ¢+ R;(t) is norm continuous if and only if
t
0<tw— Ut /Ut—sKU s)ds
0

is so [4, Theorem 2.7, p. 18]. By density arguments we may suppose that K is of the form

KiD®xB)3 ¢ [ ow0)f0)ge)dn(v') € LR x R)
where g(+) € L*°(R) and f(-) is continuous with compact support. We have

Ui(t)p = Ut —s)KU(s)pds

/f Yo~ (t=s)7(v)- so (v’ Vo(z — (t — s)v — s/, 0" )g(v')dsdp(v')

o\{* o _

v x—tv
= / / o(y,v")O(t,v,v, x,y) (v — v')*ldydu(v’)
—00 x—tv
+o0 z—tv’
+ / / o(y,v")O(t,v,v, z,y) (v — ') dydu(v')
v x—tv
= O1(t)p + O2(t)p,

where
@(t, v, 1)/7 z, y) _ f(U)g(,vl)ef(xfyftv’)(va’)_lo'(v)ef(yfx+tv)(v7v’)_1a(v’).

Let us show that both 0 < t +— O;(t) and 0 < t +— O2(t) are norm continuous. We restrict
ourselves for instance to 0 < ¢t +— O1(t) since the same argument holds for 0 < t — Oa(t).
Note that

://@muwwuumewummw@ww>
R R

where
! _ -1
E(tv v,v,T, y) - X{v’<v}X{y+tv/§x§y+tv}’v —-v | .

Let
Oi(t) : ¢ — //go(y,v/)@(t,v,v',x,y)Ea(t,v,v/,x,y)dydu(v’)
where E.(t,v,v',2,y) = E(t,v,v',2,y)X{c<v—v|}- We are going to show that
|O1(t) — Oi(t)|| = 0ase — 0
uniformly on t € [0,T]. Since

O(t,v,0",2,9)| < T17I= | fllo]lglloc =: C
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when ¢ € [0,7] and (¢,v,v', z,y) € Supp E, we have

101(t)¢ = OT ()
= /duv)/dm//goy, O(t,v, v, z,y)[E(t, v,V z,y) — E(t,v,v, 2,y)|dydu(v")
R R R R

/}tp y, V)| E(t, 0,0, 2, 9)X {jp—v|<e} dydp(v")
R

IN
Q
P —
%
\
&
o —

X }dy/x{h, o' <eydp(v /E (t,v,v,x,y)dx.

IA
Q
P —
%
\
<

R
y+tv
NOWfEtvv z,y)dr =|v—v'|7! [ dx =t implies
y+tv’

[01(t)p — O ()| < Ct/du /\s@ Y, v \dy/x“v v|<eydp(v)
R

< CTsu%u{[v — &, +5”||<PH
v'e

which shows, by using (2.28), that ||O1(t) — Oj(t)|] — 0 as ¢ — 0 uniformly on ¢ € [0,7]. Let
us show that 0 < ¢ — O5(t) is norm continuous. Let ¢ > 0, we have

105 (e = O1(D)¢|
= / / //gp [O(t, v,V z,y)E-(t,v,v , z,y)

R

/

—O(t,v,v", z,y)Ec(t, 0,0, x,y)]dydp(v")
< /du dz

R R R R

+ /du /dm//‘go(y,v/)’ }@(f,v,v/,x,y)‘ ‘Eg(t,v,v/,x,y) —Eg(f,v,v/,x,y)ldydu(v’)
R R R

=: [1 + Is.

lo(y, )] [O(t, v, 0, 2, y) — OF,v,v,2,y)| |E(t, 0,0, 2, y)| dydp(v')

\

Since [ E.(t,v,v',z,y)dz <t and
R

‘(H)(tv ’U,U,,I',y) - @(%71172}/71"73/)‘
C 2d _
LW lo) + ol F@IIE— 11 < [1+ 2] Crllollcl 7)1~

v —v']

for t € [0,7T] and (t,v,v",z,y) € Supp E, where d = max{|v|; v € Supp f} and C1 = ||g||c0,
we get

2d
L <71+ Z] ol f e = Al (2.29)

On the other hand, on can establish that

/{Eg(t,v,v',x,y)E(tvv xy‘d:n<{1+ ]‘tfﬂ
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SO
B < o1+ 2 ke ~ el (2:30)
where Cy = e2Tl9ll||g|| . Combining (2.29) and (2.30)
[0 5@ < [TCullolloo + 0] [14+ 2] flhle ~ 71 — 0

as t — t. This ends the proof. [

Remark 2.12.  Assumption (2.28) is fulfilled by the Lebesgue measure on R. We note that
if 11 has a compact support, then (2.28) is equivalent to the assumption that p is diffuse, i.e.
p{v} =0 for all v € R.

We now show the optimality of Theorem 2.11.

Theorem 2.13. Let p be a positive Radon measure on R with compact support V' which is
not diffuse i.e. p{v} # 0 for somev € V. We suppose that o = 0 and that

K:L'RxV)3p— /np(a:,v)d,u(v).

Then there exists a sequence t, — 0 such that t — R1(t) is not norm continuous at t,, for all
n.

Proof.  As in the proof of Theorem 2.10 we are led to show that

// ((t — s)v+ sv,0) — o((t — s)v + sU,v)dsdu(v) - 0
{peCe (RXV ||60Hoo—1}

as t — t, where C.(R x V) is the space of continuous functions with compact supports. To
this end, let (¢), C C(V) (with [[¢hs[[cc = 1) be a sequence converging pointwise to x(z}. By
the dominated convergence theorem, for all ¢ € C.(R) we have

[ [ ot =90+ s0in(w) = 6 - )0 + 50 (0)dsdto) - Tu{o} o(t0) ~ o)
0

as n — oo. Finally

t
sup //go ((t = s)v+ sv,v) — o((t — s)v + sv,v)dsdu(v)
{p€CRXV); llelleo=1}J

0
Stufm) s [6(t0) - o))
{6€C(R); lIglloo=1}
Choosing a function ¢ € C.(R) such that 0 < ¢(z) < 1, ¢(tv) = 1 and ¢(tv) = 0 we get

sup  In{THo(tm) — o(0)] > In{T)
{#€Cc(R); ldllo=1}

for all ¢ # t. [
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3 On Dyson-Phillips expansions on arbitrary domains

In this section, we recall a continuity result which holds in arbitrary domains §2 for not neces-
sarily space homogeneous scattering kernels [4, Proposition 4.2, p.77]. The usual continuous
models are covered by this result but the multigroup models are not.
Theorem 3.1. [4, Proposition 4.2, p.77] Let Q C RY be an open set and let (H1)-(H2)
be satisfied. Let

t — o(tv) be continuous for each v € V. (3.1)

Let du(v) = dy(p) ® dB(w) where v = pw, w € SN~1, 3 is a Radon measure on SN=1 and
dv(p) = h(p)dp (h € L}, (0,00)). Then 0 <t Ry(t) is norm continuous.

Remark 3.2. Actually, Theorem 3.1 holds in LP spaces (1 < p < c0). This can be shown
by density arguments and interpolation. This answers partly Problem 3 in [7] about the
relevance of the convexity assumption on 2.

4 Spectral mapping theorems

Before giving the main results of this section we state some preliminary results. The first
one provides a description of the spectrum of the streaming semigroup and its generator.
Lemma 4.1. (i) Let one of the following assumptions be satisfied:

(A1) o(v) = o(—v), the hyperplanes have zero p-measure and € is included in a half-space.
(A2) Q is the exterior domain of a bounded and open subset O (i.e. Q = RN\D with D = O).

Then
0(T) = 04p(T) = {X; ReX < —\"}
and
o(U(1) = 0ap(U(1) = 0eratU (1)) = {pis Il < '},
where \* = lim inf o(v).
t—oo {(z,v);t<7(z,0)}
(i) If @ = RN then the real spectrum of T i.e. o(T)NR is equal to the essential range of —o

and
o(T) = 04p(T) = (¢(T) NR) + iR,

while
(U (1) = 0up(U()) = o (U (1)) = 7T,

Proof. (1) First we deal with the approximate spectrum. Following [6] the streaming
semigroup (U(t));>0 can be decomposed into three positive semigroups (with independent
dynamics). To this end, define the sets

== {(z,v) € AxRY; 7(x,—v) < o0},

= {(z,v) € A x RY; 7(z,—v) = o0, 7(z,v) < 00}

and
23 = {(z,v) € QxRY; 7(x,—v) = 00, 7(z,v) = 00}}.

Identifying LP(Z;) (i = 1,2,3) and the (closed) subspace of LP(£2 x RY)

{feLP(Q xRY); f(z,v) =0 a.e. on @ x RN —&;}.
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Then the subspaces LP(Z;) (i = 1,2, 3) are invariant under (U(t));>0 and we have
LP(Q x RY) = LP(2)) @ LP(E2) @ LP(Z3),

o(U(t)) =o(Ui(t)) Uo(Us(t)) Uo(Us(t)) and o(T)=o(T1)Uo(Tz)Uo(T3),

where U;(t) = U(t)|1r(z,) and T; is the generator of (U;(t))i>o0 (i = 1,2,3). Moreover by [6,
Theorem 7] if de ® du(Z1) > 0, then the (approximate) spectrum of the semigroup (Ui (t)):>0
and its generator 17 are given by

o(Ur(t)) = 0ap(Ur(t)) = {p; |ul < e X'} and o(T1) = 0ap(T1) = {A; ReX < —Aj}
where

1= % {T(a:,—v)<1o%, t<r(z,v)} o(v)

On the other hand, by [6] again we have

s(T)=wo(U(+)) = =A" = — lim inf o(v).

t—o0 {(zv);t<7(z,v)}

Hence to prove the part concerning the approximate spectrum it suffices to show that As-
sumption (A1) or (A2) implies \j = \*. First, since

By(t) == {(a,0); (@, —v) < o0, t < 7(w,0)} C {(w,0); ¢ < (w,0)} = E()
it follows that \* < Aj. Suppose now that (A1) holds. Let us prove the following implication
(x,v) € E(t) = (x,v) € Eq1(t) or (x — tv,—v) € Eq(t).

Indeed, if (xz,v) ¢ E;(t), then since 2 is included in a half-space 7(x, —(—v)) < oo, and so
7(z — tv, —(—v)) < co. The last inequality implies 7(xz — tv, —v) = oo because (2 is included
in a half-space, so that t < 7(x — tv, —v) and (x — tv,—v) € C;(t). Consequently, to each
(z,v) € E(t) we can associate an element (z,v) € Ey(t) or (z — tv, —v) € Eq(t) with

o(x —tv,—v) = o(x,v) = o(v).

Thus
AT < A%

Under Assumption (A2), for each w € V there exist a cone C,, containing w and a ball
B(zy,ew) C £ such that

B(Zw,ew) X Cop C {(x,v) € QX RY; 7(x,—v) < 00, 7(2,v) = 00} C Ey(t).
Hence

Al < inf o(w) = inf o(v).
UwGVB(xwvgw) x Cy

On the other hand it is clear that

info(v) < A* <A,
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which gives the equality A\] = A*. Finally, the part concerning the critical spectrum is a con-
sequence of Theorem 1.4.

(1) When = R"™ and the collision frequency is homogeneous, according to [6, Theorem
10], the real spectrum of 7' is equal to the essential range of —o(-). By [6, Theorem 9]

o(T) = (o(T) NR) + 4R and o(U(t)) = (7). The proof of [6, Theorem 10] shows also that
0ap(T) = o(T). For the critical spectrum we use again Theorem 1.4. [

We recall
Lemma 4.2. [7, lemma 7] We assume that the measure p satisfies
/eiz'”d,u(v) — 0 as |z| — o0 (4.1)
D

for all Borel set D C RY with u(D) < oo and that (H1)-(H2) are satisfied. Then
Oap(T) C 04p(T + K).

Remark 4.3. We know [7, Lemma 5] that under Assumption (4.1), the affine hyperplanes
have zero p-measure.

We are now in position to give the main results in the whole space.

Theorem 4.4. Let Q = RY. We assume that the scattering kernel is space homogeneous
and that (H3) is satisfied.

(a) Let N > 2. If (2.1) is satisfied then
c(V() N {p; |pl <e™ or|u| > e} = elleTHRINA RA<=A™ or fed>=A"})

)

where \* = essinf o(-) and \** = esssupo(-). Moreover, if (4.1) is satisfied and if the
essential range of o(-) is connected then

o(V(t)) = etoT+HE),

(b) If N =1 and if p satisfy (2.28) and (4.1) then

o(V(t)) = etoT+K),

Proof. From Theorems 1.2 and 2.1 it follows that wer(V (+)) = werit(U(+)). Using Lemma
4.1(ii) we get werit(V(+)) = —A* and, by Theorem 1.1 (c),

O'(V( )) N {Na |:U'| >e —tA* }_ et (o(T+K)N{\; Rer>— )\*}) (42)
On the other hand, when (2 = R"), the semigroup (U(#));>0 can be extended to a positive

group with
U(=t) : ¢ — "Wz + tv) (t > 0).
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The latter is generated by —7" and its growth bound is A**. Similarly (V' (¢))¢>0 can be extended
to a group with (V(—t));>0 generated by —T' — K and can be represented by Dyson-Phillips
series. We can show by the same arguments as in Theorem 2.1 that some remainder term
depends continuously on t in operator norm. Thus,

Werit(V (=) = werat(U(—+)) = A™

and
V(=) N {ur |l > €77} = HoCTRND: RAXY),

On the other hand p € o(V(—t)) if and only if u~! € a(V(t)), so

a(V(t))N {u; |ul < e*”**} — (HO(THEON{A Red<—A*1)

and this complements (4.2). We note that Lemmas 4.1(ii) and 4.2, and the connectedness of

the essential range of o(-) imply
O‘(V(t)) N {/L; e—t)\** < |/L| < e—tk*} _ et(a(T—l—K)ﬂ{)\; —/\**SRe>\§—)\*})7

which ends the proof of (a). We now prove the item (b). Since 0 < t — R;(t) is norm
continuous (Theorem 2.11), Theorem 1.3 implies that

Ucrit(v(t)) = Ucrit(U(t)> for all t > 0.
Combining this with Lemmas 4.1(ii) and 4.2 we get
oerit(V (1)) C €T+

which ends the proof. [ |

Remark 4.5. For the special case du(v) = dv, the Lebesgue measure on R, the item (a)
of Theorem 4.4 holds for not necessarily space homogeneous scattering kernels. This can be
shown by using Theorem 3.1.

Before dealing with general spatial domains we need one more preliminary lemma.

Lemma 4.6. Let du(v) = dvy(p) ® dB(w) where v = pw, w € SN=1 ~ is a Radon measure
on (0,00) absolutely continuous with respect to Lebesgue measure and (3 is a Radon measure
on SN satisfying

B{w € SN=L wwy = 0} =0 forallwy € SN-1,
Then p satisfies (4.1).
Proof. A simple compactness argument shows that

lim sup B{we SV |w-wl<el=0. (4.3)

e—0 onSN_l

We have to show that
/eiz'”d,u(v) —0as |z| = o
D
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for all Borel set D C RY with u{D} < co. The last statement is equivalent to show that

/h(v)eiz'”du(v) —0as |z] = o0
RN
for all h € LY(RY; w). Since the continuous functions with compact support are dense in

LY(RYN; 1) it suffices to deal with a continuous function h with compact support, say with
support included in B(0, R), the ball centred at 0 with radius R.

R
[reesae) = [ ase) / (o, )™ )
RN SN-1
R
T
SN-1 0
R
= / /h pyw) ZP\le “dy(p)
{weSN-1; |w'w|<e} 0
R
" / dﬁ(w)/h(/’,w)eipzw'wdv(m
{weSN-1; | w|>e} 0
= Il + 127

where v = pw and z = |z|w’. From (4.3) it is easy to see that [; is arbitrarily small for £ small
enough. We fix € small enough and consider the second term. Since h is continuous and 7 is
absolutely continuous with respect to Lebesgue measure,

R
/h(va)ei”'z“/'“d’y(p) —0as [2] = oo
0

uniformly in w and w’ such that |w-w'| > so Iy — 0 as |z| — co. [ ]

Theorem 4.7. Let Q C RY be an open set and let (H1)-(H2) be satisfied. Let du(v) =
dv(p) ® dB(w) where v is a Radon measure on (0,00) absolutely continuous with respect to
Lebesgue measure and (3 is a Radon measure on S™N~1. We assume that (3.1) is satisfied.
Then

O‘(V( )) ﬂ{ﬂa |'u| > e —tA* } (c(THEK)N{A; Rex>— )\*}) (4'4)

Moreover, if 3 is such that B{w € SN71; w-wy = 0} =0 for all wg € SN~1 and if Q satisfies
one of Assumptions (A1) or (A2), then

o(V(t)) = et T+5) 4 {o}.

Proof.  As in the proof of item (a) of Theorem 4.4, the use of Theorems 3.1, 1.2 and 1.1,
and Lemma 4.1(7) gives (4.4). On the other hand, if € satisfies one of Assumptions (Al) or
(A2) then by Lemmas 4.1(i), 4.2 and 4.6 and the inclusion e!a»(T+K) < 5, (V(t)) we obtain

{; |ul < e} TR co(V(1))
which ends the proof. [ |
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Remark 4.8. In bounded geometries, the spectral mapping theorems are consequences
of compactness results obtained under the assumption that the collision operator is ”weakly
compact with respect to velocities”, where the weak compactness is ”collective” with respect
to the space variable [3, 5]. This suggests that (H1)(H2) could probably be replaced by a
collective weak compactness assumption.
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