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1 Introduction

Let T be the generator of a C0-semigroup (U(t))t≥0 on a Banach space X and K ∈ L(X),
i.e. a linear bounded operator on X. Let (V (t))t≥0 be the C0-semigroup generated by T +K.
It is given by the Dyson-Phillips expansion

V (t) =
∞∑

j=0

Uj(t), (1.1)

where

U0(t) = U(t), Uj+1(t) =

t∫

0

Uj(t− s)KU0(s)ds (j ≥ 0).

It is known that
the compactness of Uk(t) for all t ≥ 0 (1.2)

implies the stability of the essential spectrum, i.e. σess(V (t)) = σess(U(t)), if k = 1 and the
stability of the essential type, i.e. ωess(V (·)) = ωess(U(·)), if k ≥ 1 (see [17, 24, 29, 30, 31]).
On the other hand,

the norm continuity of 0 ≤ t 7→ Uk(t) (1.3)

ensures the stability of the critical spectrum, i.e. σcrit(V (t)) = σcrit(U(t)), when k = 1
and the stability of the critical type, i.e. ωcrit(V (·)) = ωcrit(U(·)), when k ≥ 1 (see [3] for
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these stability results, and [21] for the properties of the critical spectrum of C0-semigroups in
Banach spaces). Actually, (1.2) and (1.3) are linked by S. Brendle’s result:

Theorem 1.1. [2, Theorem 3.2] Let ν > ω0(U(·)) and k ∈ N. Then the following statements
are equivalent.
• Uk(t) is compact for all t ≥ 0.
• 0 ≤ t 7→ Uk(t) is norm continuous and R(ν + iγ, T )(KR(ν + iγ, T ))k is compact for all
γ ∈ R.

Naturally, an interesting problem is: what conditions, in terms of the resolvents of the
generators, imply the norm continuity of 0 ≤ t 7→ Uk(t)? When the underlying space is a
Hilbert space, by the use of a technique of O. El-Mennaoui and K. J. Engel [7], a sufficient
condition was given by S. Brendle:

Theorem 1.2. [2, Theorem 3.1] Assume that X is a Hilbert space. Let ν > ω0(U(·)) and
k ∈ N. If

‖R(ν + iγ, T )(KR(ν + iγ, T ))k‖ → 0 as |γ| → ∞ (1.4)

then 0 ≤ t 7→ Uk+2(t) is norm continuous.

We note that an assumption like (1.4) together with a compactness of some iterate of
R(λ, T )K allowed D. Song [25], via Gearhart’s results [8], to obtain the following estimate for
the essential type: ωess(V (·)) ≤ ω0(U(·)). That result was also applied by K. Latrach and B.
Lods [13] to transport equations. It is clear that we cannot deal with the norm continuity of
0 ≤ t 7→ U1(t) by means of Theorem 1.2. In [35] Q. C. Zhang and F. L. Huang characterize
the norm continuity of 0 ≤ t 7→ V (t) − U(t) (this is equivalent to the norm continuity of
0 ≤ t 7→ U1(t) [17, Theorem 2.7, p. 18]):

Theorem 1.3. [35] Assume that X is a separable Hilbert space. Let ν > ω0(U(·)). Then
0 ≤ t 7→ V (t)− U(t) is norm continuous if and only if

‖R(ν + iγ, T )KR(ν + iγ, T )‖ → 0 as |γ| → ∞ (1.5)

sup
‖x‖≤1

∞∫

A

[
‖R(ν ± iγ, T )KR(ν ± iγ, T )x ‖2

+‖R(ν ± iγ, T ∗)K∗R(ν ± iγ, T ∗)x ‖2
]
dγ → 0 as A →∞. (1.6)

For a further generalization of this result see [14]. The condition (1.6), of integral type, is not
easy to check in practice. However, the authors of [35] mentioned a result due to J. G. Peng
et al which gives directly the compactness of V (t)− U(t), namely:

Theorem 1.4. [22] Assume that X is a separable Hilbert space. If

R(λ, T )KR(λ, T ) is compact for λ ∈ ρ(T )

and

lim
|γ|→+∞

‖R(ν + iγ, T )2K‖+ ‖R(ν + iγ, T )KR(ν + iγ, T )‖+ ‖KR(ν + iγ, T )2‖ = 0, (1.7)

then V (t)− U(t) is compact for all t ≥ 0.
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We give here sufficient conditions implying the norm continuity of 0 ≤ t 7→ U1(t). More
precisely, we show in Lemma 2.1 that if for some m ∈ N∗ and some ν > ω0(U(·))

(Am)
m∑

i=0

‖R(ν + iγ, T )iKR(ν + iγ, T )m−i‖ → 0 as |γ| → ∞,

then 0 ≤ t 7→ U1(t) is norm continuous. This result is proved by adapting mathematical
techniques used in Brendle’s paper [2]. Note that (A2) corresponds to (1.7). Motivated by
problems arising in transport theory [15], we reformulate in Corollary 2.9 condition (A1) in
another way, when T is dissipative, namely:

‖K∗R(ν + iγ, T )K‖+ ‖KR(ν + iγ, T )K∗‖ → 0 as |γ| → ∞.

The above results enable us to derive some stability results on essential or critical spectra
of perturbed semigroups. In the last section, we show how the results obtained in Section
2 apply to transport equations with vacuum boundary conditions (transport equations with
boundary operators are dealt with in [15]). We consider the integro-differential equation
which governs the distribution of neutrons in a nuclear reactor

∂ϕ

∂t
(x, v, t) + v · ∂ϕ

∂x
(x, v, t) + σ(x, v)ϕ(x, v, t)−

∫

V

k(x, v, v′)ϕ(x, v′, t)dµ(v′) = 0 (1.8)

with initial and boundary conditions

ϕ(x, v, 0) = ϕ0(x, v), ϕ|Γ−(·, ·, t) = 0, (1.9)

where (x, v) ∈ Ω × V, Ω is a smooth open subset of RN (N ≥ 1) and V (the velocity space)
is a support of a positive Radon measure µ on RN . Here

Γ− = {(x, v) ∈ ∂Ω× V ; v · η(x) < 0},

where η(x) is the unit outward normal at x ∈ ∂Ω. The collision frequency σ(·, ·) ∈ L∞(Ω×V )
is a non-negative function while k(·, ·, ·) is the scattering kernel. The unbounded operator,
called the streaming operator,

T : D(T ) 3 ϕ 7→ −v · ∂ϕ

∂x
− σ(x, v)ϕ(x, v)

with domain
D(T ) = {ϕ ∈ L2(Ω× V ); v · ∂ϕ

∂x
∈ L2(Ω× V ), ϕ|Γ− = 0}

is the infinitesimal generator of the so-called streaming C0-semigroup (U(t))t≥0 given by

U(t)ϕ(x, v) =

{
e−
R t
0 σ(x−sv,v)dsϕ(x− tv, v) if t < τ(x, v),

0 otherwise,

where τ(x, v) = inf {s > 0; (x− sv) /∈ Ω} . Moreover, if the collision operator

K : L2(Ω× V ) 3 ϕ 7→
∫

V

k(x, v, v′)ϕ(x, v′)dµ(v′) ∈ L2(Ω× V ) (1.10)
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is bounded on L2(Ω× V ), then T + K generates a C0-semigroup (V (t))t≥0 which solves the
evolution problem (1.8)-(1.9). Many authors studied the compactness of terms of the Dyson-
Phillips expansions when Ω is bounded, we quote the contributions of K. Jörgens [11], I.
Vidav [27], G. Greiner [9], J. Voigt [30], P. Takac [26], L. Weis [31], M. Mokhtar-Kharroubi
[16][17, Chapter 4] etc... Typically, U2(t) (or equivalently R2(t)) is compact for a large class
of collision operators. It is only recently that the compactness of U1(t) was proved by M.
Mokhtar-Kharroubi [19]. On the other hand, in unbounded domains, due to the lack of
compactness, it turned out in [20] that the critical spectrum and the norm continuity of (1.3)
are the relevant tools to the spectral analysis of (V (t))t≥0. It was shown that 0 ≤ t 7→ U1(t) is
norm continuous under fairly general assumptions. In this section we show how our functional
analytic results provide a new approach to those results and allow also to improve some of
them. We note that the essential and critical spectra of (U(t))t≥0 are known [19, Remark 2]
and [20]. Firstly, we single out a general class of measures µ and collision operators K under
which the condition (A1) holds. We prove, for bounded spatial domains, that

σess(V (t)) = σess(U(t)) (∀t ≥ 0).

As announced before, this result was already proved by M. Mokhtar-Kharroubi [19] by inves-
tigating the compactness of U1(t) directly. We also show

σcrit(V (t)) = σcrit(U(t)) (∀t ≥ 0) (1.11)

under much more general assumptions than in [20], where (1.11) was established by studying
the norm continuity of 0 ≤ t 7→ U1(t) directly. In particular, we answer positively some open
problems posed in [20]. Our mathematical analysis relies on density arguments and Fourier
analysis. We end up the last section by investigating more general collision operators and
show thus how powerful is the resolvent approach in transport theory.

2 Norm continuity of 0 ≤ t 7→ U1(t) in Hilbert spaces

From now on X is a Hilbert space and we denote it by H. Our first result in this section
is the following basic lemma:

Lemma 2.1. Assume there exist ν > ω0(U(·)) and m ∈ N∗ such that

(Am) ‖R(ν + iγ, T )iKR(ν + iγ, T )m−i‖ → 0 as |γ| → ∞ for i = 0, 1, · · · ,m.

Then 0 ≤ t 7→ U1(t) is norm continuous.

A first consequence of this lemma is the following stability result of the critical spectrum.

Theorem 2.2. Assume there exist ν > ω0(U(·)) and m ∈ N∗ such that

‖R(ν + iγ, T )iKR(ν + iγ, T )m−i‖ → 0 as |γ| → ∞ for i = 0, 1, · · · , m.

Then σcrit(V (t)) = σcrit(U(t)) for t ≥ 0.

Proof. According to [3, Theorem 4.5], if 0 ≤ t 7→ V (t) − U(t) is norm continuous, then
the two semigroups have the same critical spectrum. On the other hand we know, by [17,
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Theorem 2.7, p 18], that 0 ≤ t 7→ V (t)−U(t) is norm continuous if and only if 0 ≤ t 7→ U1(t)
is. Then the theorem follows from Lemma 2.1. ¥

A second consequence of Lemma 2.1 is the following stability result of the essential
spectrum.

Theorem 2.3. Assume there exist ν > ω0(U(·)) and m ∈ N∗ such that

• ‖R(ν + iγ, T )iKR(ν + iγ, T )m−i‖ → 0 as |γ| → ∞ for i = 0, 1, · · · ,m.

• R(ν + iγ, T )KR(ν + iγ, T ) is compact for all γ ∈ R.

Then σess(V (t)) = σess(U(t)) for all t ≥ 0.

Proof. It is well known that two bounded operators whose difference is compact have the
same essential spectrum. Actually, by [17, Theorem 2.6, p. 16], the difference V (t) − U(t)
is compact for all t ≥ 0 if and only if U1(t) is, which, by Theorem 1.1, is equivalent to
0 ≤ t 7→ U1(t) being norm continuous and R(ν + γ, T )KR(ν + γ, T ) being compact for all
γ ∈ R (ν > ω0(U(·))). Summarizing all that, the proof is an immediate consequence of
Lemma 2.1. ¥

Our proof of lemma 2.1 is inspired and adapted from [2]. Before giving it, we recall some
facts. We start with

Lemma 2.4. [28] For all t, s ≥ 0 and p ∈ N we have the following identity

Up(t + s) =
p∑

j=0

Uj(t)Up−j(s).

Using this lemma we can define a new C0-semigroup on the Hilbert space H := H ×H.
Let

U(t) :=
(

U0(t) U1(t)
0 U0(t)

)

for all t ≥ 0, then (U(t))t≥0 is a C0-semigroup with generator

T =
(

T K
0 T

)

and domain D(T) = D(T )×D(T ). The resolvent of T is given by

R(λ,T) =
(

R(λ, T ) R(λ, T )KR(λ, T )
0 R(λ, T )

)

for Reλ > ω0(U(·)) (see [2]).
The following lemma provides a representation of U1(t) in terms of the resolvent. It contains
an essential piece of analysis for the proof of Lemma 2.1.

Lemma 2.5. Let ν > ω0(U(·)) and n ∈ N∗. For all x ∈ H,

U1(t)x =
n!

2tnπ
lim

A→∞

A∫

−A

e(ν+iγ)t
n∑

i=0

R(ν + iγ, T )i+1KR(ν + iγ, T )n−i+1xdγ,

where the integrals converge uniformly for t ∈ R.
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Proof. Let n ∈ N∗. By [33, Theorem 1.1], for all κ ∈ H

U(t)κ =
n!

2tnπ
lim

A→∞

A∫

−A

e(ν+iγ)tR(ν + iγ, T)n+1κdγ,

where the integrals converge uniformly for t ∈ R. By considering the components of U(t)κ
and R(ν + iγ, T)n+1κ the result follows. ¥

Now we are ready to give the:

Proof of Lemma 2.1. Let ν > ω0(U(·)). Define the operator UA
1 (t) on H as follows

UA
1 (t)x =

m!
2tmπ

A∫

−A

e(ν+iγ)t
m∑

i=0

R(ν + iγ, T )i+1KR(ν + iγ, T )m−i+1xdγ.

We are going to show that

‖U1(t)− UA
1 (t)‖ → 0 as A → +∞ (2.1)

uniformly for t ∈ [δ, 1
δ ] (δ > 0) and that, for each A > 0,

0 ≤ t 7→ UA
1 (t) ∈ L(H) (2.2)

is norm continuous. Let us show (2.1). According to Lemma 2.5 we have

(U1(t)− UA
1 (t))x =

m!
2tmπ

∫

|γ|>A

e(ν+iγ)t
m∑

i=0

R(ν + iγ, T )i+1KR(ν + iγ, T )m−i+1xdγ.

Let x, x∗ ∈ H, using Cauchy-Schwartz’s inequality and Plancherel’s theorem [10, Lemma 2],
we obtain

2tmπ

m!
|〈(U1(t)− UA

1 (t))x, x∗〉|

≤
∫

|γ|>A

m∑

i=0

|〈R(ν + iγ, T )i+1KR(ν + iγ, T )m−i+1x, x∗〉|dγ

=
∫

|γ|>A

m∑

i=0

|〈R(ν + iγ, T )iKR(ν + iγ, T )m−iR(ν + iγ, T )x,R(ν − iγ, T ∗)x∗〉|dγ

≤
m∑

i=0

sup
|γ|>A

‖R(ν + iγ, T )iKR(ν + iγ, T )m−i‖

×
[ +∞∫

−∞
‖R(ν + iγ, T )x‖2dγ

] 1
2
[ +∞∫

−∞
‖R(ν − iγ, T ∗)x∗‖2dγ

] 1
2
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=
m∑

i=0

sup
|γ|>A

‖R(ν + iγ, T )iKR(ν + iγ, T )m−i‖

×
[√

2π

+∞∫

0

e−2νs‖U(s)x‖2ds
] 1

2
[√

2π

+∞∫

0

e−2νs‖U∗(s)x∗‖2ds
] 1

2

≤ 2πC
m∑

i=0

sup
|γ|>A

‖R(ν + iγ, T )iKR(ν + iγ, T )m−i‖‖x‖‖x∗‖,

where C is some positive constant. Thus

‖U1(t)− UA
1 (t)‖ ≤ Cm!

tm

m∑

i=0

sup
|γ|>A

‖R(ν + iγ, T )iKR(ν + iγ, T )m−i‖

which, by assumptions, converges to zero as A goes to infinity uniformly for t ∈ [δ, 1
δ ]. It

remains to prove (2.2). To this end, let t > 0. We have

∥∥2π(t + h)m

m!
UA

1 (t + h)− 2πtm

m!
UA

1 (t)
∥∥

≤
m∑

i=0

sup
|γ|≤A

‖R(ν + iγ, T )i+1KR(ν + iγ, T )m−i+1‖
A∫

−A

|e(ν+iγ)(t+h) − e(ν+iγ)t|dγ.

One sees that the last term tends to zero as h goes to zero. The proof is now achieved. ¥

Remark 2.6. Lemma 2.1 is in the spirit of the result proved by P.You [34], which char-
acterizes the norm continuous semigroups in Hilbert spaces in terms of the resolvent of their
generators. The technique we use in the proof is due to O. El-Mennaoui and K. J. Engel [7]
(see also [1, Theorem 3.13.2, p. 205]).

Remark 2.7. For m = 2, Theorem 2.3 coincides with Theorem 1.4.

Under the dissipativity of T , we can reformulate (A1) in more workable form in some
cases (see Section 3.2 and [15]). Let ν > 0. The following lemma shows that, under the
dissipativity of T , one can control the asymptotic behaviour of ‖R(ν + iγ, T )K‖ in the axis
Reλ = ν by that of ‖K∗R(ν+iγ, T )K‖, and accordingly the asymptotic behaviour of ‖KR(ν+
iγ, T )‖ by that of ‖KR(ν + iγ, T )K∗‖.
Lemma 2.8. Assume that T is dissipative. Then for ν > 0

√
ν‖R(ν + iγ, T )K‖ ≤

√
‖K∗R(ν + iγ, T )K‖ (2.3)

and
√

ν‖KR(ν + iγ, T )‖ ≤
√
‖KR(ν + iγ, T )K∗‖. (2.4)

Proof. Since T is dissipative,

|〈(λ− T )y, y〉| ≥ Re〈(λ− T )y, y〉
≥ Reλ‖y‖2
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for all y ∈ D(T ), where 〈·, ·〉 stands for the scalar product in H. In particular, for λ = ν + iγ
and y = R(ν + iγ, T )Kx with x ∈ H

ν‖R(ν + iγ, T )Kx‖2 ≤ |〈Kx, R(ν + iγ, T )Kx〉|
= |〈x,K∗R(ν + iγ, T )Kx〉|
≤ ‖K∗R(ν + iγ, T )K‖‖x‖2

which shows (2.3). Inequality (2.4) follows by duality. Indeed, since T ∗ is dissipative, by (2.3)
we obtain

√
ν‖KR(ν + iγ, T )‖ =

√
ν‖R(ν − iγ, T ∗)K∗‖

≤
√
‖KR(ν − iγ, T ∗)K∗‖

=
√
‖KR(ν + iγ, T )K∗‖,

which ends the proof. ¥

Taking into account of (2.3) and (2.4), it follows from Lemma 2.1:

Corollary 2.9. Assume that T is dissipative and that for some ν > 0

‖K∗R(ν + iγ, T )K‖ → 0 and ‖KR(ν + iγ, T )K∗‖ → 0 as |γ| → ∞,

then 0 ≤ t 7→ U1(t) is norm continuous.

Remark 2.10. Actually, Lemma 2.8 remains true if we assume that T is sum of a dissi-
pative operator T1 and a bounded operator B. In this case we can prove that for ν > ‖B‖,√

(ν − ‖B‖)‖R(ν + iγ, T )K‖ ≤
√
‖K∗R(ν + iγ, T )K‖ and

√
(ν − ‖B‖)‖KR(ν + iγ, T )‖ ≤√

‖KR(ν + iγ, T )K∗‖. Indeed, Since T1 is dissipative,

|〈(λ− T1 −B)y, y〉| ≥ Re〈(λ− T1 −B)y, y〉
≥ Reλ‖y‖2 −Re〈By, y〉
≥ (Reλ− ‖B‖)‖y‖2

for all y ∈ D(T ). By taking λ = ν + iγ with ν > ‖B‖ and y = R(ν + iγ, T )Kx with x ∈ H
we get

√
(ν − ‖B‖)‖R(ν + iγ, T )Kx‖ ≤

√
‖K∗R(ν + iγ, T )K‖‖x‖.

The second inequality follows by duality. Consequently, if T = T1 + M with T1 is dissipative
operator and B is bounded and if for some ν > ‖B‖,

‖K∗R(ν + iγ, T )K‖ → 0 and ‖KR(ν + iγ, T )K∗‖ → 0 as |γ| → ∞,

then 0 ≤ t 7→ U1(t) is norm continuous.
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3 Application to transport theory

In this section we study the stability of the essential or the critical spectrum of the
streaming semigroup when its generator is perturbed by the collision operator. In Theorem
3.6, we find again by a resolvent approach, an optimal result [19, Theorem 1 and Corollary1]
obtained recently by M. Mokhtar-Kharroubi by means of semigroup approach. We also answer
positively some open problems posed in [20] (see Remarks 3.9 and 3.11).
Let 1 < p < ∞. We consider the collision operator K as a mapping

K(·) : Ω 3 x 7→ K(x) ∈ L(Lp(V, µ)),

where
K(x) : Lp(V ) 3 ϕ 7→

∫

V

k(x, v, v′)ϕ(v′)dµ(v′) ∈ Lp(V ).

We assume that K(·) is strongly measurable, i.e.

Ω 3 x 7→ K(x)ψ ∈ Lp(V, µ) is measurable for any ψ ∈ Lp(V, µ)

and
Ω 3 x 7→ ‖K(x)‖L(Lp(V )) is essentially bounded.

Then, we define a collision operator by

K : Lp(Ω× V ) 3 ϕ 7→ K(x)ϕ(x),

where we make the identification Lp(Ω × V ) := Lp(Ω; Lp(V )). It follows from [19] that K ∈
L(Lp(Ω × V )) and ‖K‖L(Lp(Ω×V )) = ess sup

x∈Ω
‖K(x)‖L(Lp(V )). In what follows we will use the

concept of regular operator:

Definition 3.1. [19] Let 1 < p < ∞. A collision operator K is said to be regular if:

(i) {K(x); x ∈ Ω} is a collectively compact set of operators on Lp(V ), i.e.

{K(x)ψ; x ∈ Ω, ‖ψ‖Lp(V ) ≤ 1}

is relatively compact in Lp(V ).

(ii) For every ψ′ ∈ Lp′(V ), {K ′(x)ψ′; x ∈ Ω} is relatively compact in Lp′(V ).

We recall:

Lemma 3.2. [19] The class of regular collision operators is the closure in L(Lp(Ω×V )) of
the subclass of collision operators with kernels of the form

k(x, v, v′) =
∑

i∈I

αi(x)fi(v)gi(v′), (3.1)

with fi ∈ Lp(V ), gi ∈ Lp′(V ) (1
p + 1

p′ = 1) and αi ∈ L∞(Ω) (I finite).
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3.1 Technical results

In order to apply the above stability results, our main task is to find sufficient conditions
under which (A1) holds. This will be provided by the following basic lemma:

Lemma 3.3. Let p = 2 and let Ω be convex. We assume that the collision operator is
regular, that the affine hyperplanes (i.e. the translated hyperplanes) have zero µ-measure and
that σ(x, v) is space homogeneous (i.e. σ(x, v) = σ(v)). Then for all ν > ω0(U(·))

‖KR(ν + iγ, T )‖ → 0 and ‖R(ν + iγ, T )K‖ → 0 as |γ| → ∞.

Before giving the proof, we recall:

Lemma 3.4. [17, Lemma 3.3, p. 39] Let µ be a finite Radon on RN such that the affine
hyperplanes have zero µ-measure. Then

lim
ε→0

sup
(e,e1)∈SN

µ{v ∈ RN ; |v · e + e1| ≤ ε} = 0,

where e ∈ RN , e1 ∈ R and SN is the unit sphere of RN+1.

Proof of Lemma 3.3. It follows from the Resolvent identity

R(ς + iγ, T )−R(ν + iγ, T ) = (ν − ς)R(ς + iγ, T )R(ν + iγ, T ) for ς, ν > ω0(U(·)),

that if lim|γ|→∞(‖R(ν + iγ, T )K‖ + ‖KR(ν + iγ, T )‖) = 0 holds for some ν > ω0(U(·)), it
remains true for all ς > ω0(U(·)). Thus it is no restriction to assume that ν > 0 (with this
assumption the operator R(ν + iγ) bellow will be well defined). We note that the operators
R(ν + iγ, T )K and KR(ν + iγ, T ) depend continuously on K ∈ L(L2(Ω× V )), uniformly for
γ ∈ R. Then, using Lemma 3.2, we may assume without loss of generality that the collision
operator K has a kernel of degenerate form, i.e. k(x, v, v′) =

∑
i∈I αi(x)fi(v)gi(v′) with fi(·),

gi(·) ∈ L2(V ) and αi(·) ∈ L∞(Ω) (I finite). By density again, we may suppose that fi(·), gi(·)
are continuous with compact supports. We can (by linearity) also suppose that the last sum
contains one term, say α(x)f(v)g(v′). Let us show first

‖R(ν + iγ, T )K‖ → 0 as |γ| → ∞. (3.2)

We recall that R(λ, T )ϕ(x, v) =
∫ τ(x,v)
0 e−(λ+σ(v))tϕ(x − tv, v)dt for ϕ ∈ L2(Ω × V ), where

τ(x, v) = inf{s > 0; x− sv /∈ Ω}. Hence the convexity of Ω allows to write

R(ν + iγ, T )K = RR(ν + iγ, T∞)EK,

where E : L2(Ω × V ) → L2(RN × V ) is the trivial extension (by zero) to RN × V , R :
L2(RN × V ) → L2(Ω × V ) is the restriction operator and T∞ is the streaming operator on
the whole space RN × V with collision frequency σ(v). Define K∞ as follows:

K∞ : L2(RN × V ) 3 ϕ 7→
∫

V

χΩ(x)α(x)f(v)g(v′)ϕ(x, v′)dµ(v′) ∈ L2(RN × V ).

Then
RR(ν + iγ, T∞)EK = RR(ν + iγ, T∞)K∞E.
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The operator R(ν + iγ, T∞)K∞ splits as

R(ν + iγ, T∞)K∞ = M2R(ν + iγ)M1,

where
M1 : L2(RN × V ) 3 ϕ 7→ α(x)χΩ(x)

∫

V

ϕ(x, v′)g(v′)dµ(v′) ∈ L2(RN ),

M2 : L2(RN × Ṽ ) 3 ϕ 7→ f(v)ϕ(x, v) ∈ L2(RN × V )

(the function ϕ is extended by zero outside of its domain) and

R(ν + iγ) : L2(RN ) 3 ϕ 7→
∫ +∞

0
e−t(ν+iγ+σ(v))ϕ(x− tv)dt ∈ L2(RN × Ṽ )

where Ṽ is the support of f. Hence, it suffices to deal with R(ν + iγ). On the other hand, for
ϕ ∈ L2(RN ), ψ ∈ L2(RN × Ṽ ), the equation

ψ = R(ν + iγ)ϕ

is equivalent to

v · ∂ψ

∂x
+ σ(v)ψ + (ν + iγ)ψ = ϕ

or equivalently

ψ̂ =
1

(σ(v) + ν) + i(ξ · v + γ)
ϕ̂,

where ϕ̂ and ψ̂ are respectively the L2-Fourier transform of ϕ and ψ with respect to the space
variable. Let

R̂(ν + iγ) : L2(RN ) 3 φ(ξ) 7→ φ(ξ)
(σ(v) + ν) + i(ξ · v + γ)

∈ L2(RN × Ṽ ).

Thanks to Parseval’s equality, it is sufficient to show that

lim
|γ|→∞

‖R̂(ν + iγ)‖
L(L2(RN ),L2(RN×eV ))

= 0.

We have

‖R̂(ν + iγ)φ‖2 =
∫

RN

∫

eV

|φ(ξ)|2
(σ(v) + ν)2 + (ξ · v + γ)2

dµ(v)dξ

≤ sup
ξ∈RN

∫

eV

1
(σ(v) + ν)2 + (ξ · v + γ)2

dµ(v)‖φ‖2.

Now, our goal is to show

lim
|γ|→∞

∫

eV

1
(σ(v) + ν)2 + (ξ · v + γ)2

dµ(v) = 0

11



uniformly for ξ ∈ RN . Let ε > 0 arbitrary. Introduce polar coordinates, in RN+1, (ξ, γ) =
|(ξ, γ)|(e, e1), e = ξ/

√
|ξ|2 + γ2 and e1 = γ/

√
|ξ|2 + γ2, which give

∫

eV

1
(σ(v) + ν)2 + (ξ · v + γ)2

dµ(v)

=
∫

eV ∩{|e·v+e1|≤ε}

1
(σ(v) + ν)2 + (|ξ|2 + |γ|2)(e · v + e1)2

dµ(v)

+
∫

eV ∩{|e·v+e1|>ε}

1
(σ(v) + ν)2 + (|ξ|2 + |γ|2)(e · v + e1)2

dµ(v)

≤ sup
(e,e1)∈SN

∫

eV ∩{|e·v+e1|≤ε}

1
(σ(v) + ν)2

dµ(v)

+
∫

eV ∩{|e·v+e1|>ε}

1
(σ(v) + ν)2 + (|ξ|2 + |γ|2)ε2

dµ(v)

=: J1 + J2.

According to Lemma 3.4, J1 is arbitrarily small for ε small enough. We choose ε small enough
and consider the second term J2. The last is majorized by

µ{Ṽ }
(|ξ|2 + |γ|2)ε2

which goes to zero as |γ| → ∞ uniformly for ξ ∈ RN . This ends the proof of (3.2). Now, we
have

‖KR(ν + iγ, T )‖ = ‖R(ν − iγ, T ∗)K∗‖, (3.3)

where T ∗ is the adjoint of T and is given by :

T ∗ : D(T ∗) 3 ϕ 7→ v · ∂ϕ

∂x
− σ(v)ϕ ∈ L2(Ω× V )

with D(T ∗) = {ϕ ∈ L2(Ω × V ); v · ∂ϕ
∂x ∈ L2(Ω × V ), ϕ|Γ+

= 0}, where Γ+ = {(x, v) ∈
∂Ω× V ; v · η(x) > 0}. Proceeding as above, we can prove that

‖R(ν − iγ, T ∗)K∗‖ → 0 as |γ| → ∞
which ends the proof in virtue of (3.3). ¥

The following proposition gives some necessary conditions, on the velocity measure µ,
for the validity of Lemma 3.3.

Proposition 3.5. Let µ be a finite Radon measure and let Ω = RN . We assume that σ = 0
and that

K : L2(RN × V ) 3 ϕ 7→
∫

V

ϕ(x, v′)dµ(v′).

If there exists a hyperplane H = {v ∈ RN ; v · ẽ = ã} with positive µ-measure, where ẽ ∈ SN−1

and ã ∈ (0, +∞), then
lim
|γ|→∞

‖R(ν + iγ, T )K‖ > 0

for all ν > ω0(U(·)).
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Proof. As in the proof of Lemma 3.3 by the Resolvent identity, it is enough to prove the
lemma for ν = 1. By the Fourier transform (see the proof of Lemma 3.3) this amounts to
showing that

lim
|γ|→∞

‖R̂(1 + iγ)‖ > 0. (3.4)

Indeed, if (3.4) is true, then there exist a normalized sequence (φn)n ⊂ L2(RN ) and (γn)n ⊂ R
tending to +∞ or −∞ such that

sup
n∈N

‖R̂(1 + iγn)φn‖ > 0.

By Parseval’s equality there exists a normalized sequence (ϕn)n ⊂ L2(RN ) such that

sup
n∈N

‖R(1 + iγn)ϕn‖ > 0.

Set ϕ̃n(x, v) = ϕn(x)/
√

µ(V ) (with the notations of the proof of Lemma 3.3, Ṽ = V ). Then

‖ϕ̃n‖L2(RN×V ) = 1 and R(1 + iγn, T )Kϕ̃n =
√

µ(V )R(1 + iγn)ϕn.

Hence

lim
|γ|→∞

‖R(1 + iγ, T )K‖ ≥ sup
n∈N

‖R(1 + iγn, T )Kϕ̃n‖ =
√

µ(V ) sup
n∈N

‖R(1 + iγn)ϕn‖ > 0.

Let us show (3.4). For all n ∈ N∗ define the normalized function

φn(ξ) =
1

|B(0, 1)| 12
χB(nee,1)(ξ) ∈ L2(RN ),

where |B(0, 1)| is the volume of unit ball in RN and B(nẽ, 1) is the ball centered at nẽ with
radius 1. Then

‖R̂(1− inã)φn‖2 =
∫

RN

∫

V

|φn(ξ)|2
1 + (ξ · v − nã)2

dµ(v)dξ

≥
∫

RN

∫

H

|φn(ξ)|2
1 + (ξ · v − nẽ · v)2

dµ(v)dξ

=
∫

RN

∫

H

|φn(ξ)|2
1 + ((ξ − nẽ) · v)2

dµ(v)dξ

≥
∫

RN

∫

H

|φn(ξ)|2
1 + |v|2 dµ(v)dξ

=
∫

H

1
1 + |v|2 dµ(v)

so
‖R̂(1− inã)‖2 ≥

∫

H

1
1 + |v|2 dµ(v),

which finishes the proof. ¥

13



3.2 Stability of the essential spectrum

Our main result in this subsection is:

Theorem 3.6. Let p = 2 and let Ω be bounded (not necessarily convex). We assume that
µ is such that the affine hyperplanes have zero µ-measure and that the collision operator is
regular. Then V (t)− U(t) is compact for all t ≥ 0 and consequently σess(V (t)) = σess(U(t))
for all t ≥ 0.

Proof. We have to show that V (t) − U(t) is compact for all t ≥ 0 or equivalently, by
[17, Theorem 2.6, p. 16], that U1(t) is compact for all t ≥ 0. U1(t) depends (linearly and)
continuously, in the operator norm topology, on the collision operator K. Then, using Lemma
3.2 and linearity we may assume that

K : L2(Ω× V ) 3 ϕ 7→ α(x)
∫

V

f(v)g(v′)ϕ(x, v′)dµ(v′),

where f , g ∈ L2(V ), α ∈ L∞(Ω), and f, g and α are non-negative. Let d > 0 be such that Ω is
included in the ball B(0, d) := {x; |x| < d}. Let Ũ1(t) stand for the operator U1(t) associated
to Ω = B(0, d), the collision frequency σ̃ = 0 and the scattering kernel ‖α‖∞f(v)g(v′). Then
one can see that

U1(t) ≤ R̃Ũ1(t)Ẽ

in the lattice sense, where Ẽ : L2(Ω× V ) → L2(B(0, d)× V ) is the trivial extension operator
while R̃ : L2(B(0, d) × V ) → L2(Ω × V ) is the restriction operator. So according to [6] the
compactness of Ũ1(t) for all t ≥ 0 implies that of U1(t). Therefore, it is no restriction to
assume that

Ω is bounded and convex, and σ is space homogeneous.

In this case Lemma 3.3 with Lemma 2.1 guarantee us that 0 ≤ t → U1(t) is norm continuous.
On the other hand, we know from [17, Theorem 4.1, p. 57] that KR(ν + iγ, T ) is compact for
all γ ∈ R. Hence from Theorem 1.1, U1(t) is compact for all t ≥ 0. This ends the proof. ¥

Remark 3.7. For bounded Ω, the essential spectrum of U(t) is provided in [19, Remark 2]:

σess(U(t)) = {µ ∈ C; |µ| ≤ e−λ∗t},

where λ∗ = lim
t→∞ inf

{(x,v); t<τ(x,v)}
1
t

t∫

0

σ(x− sv, v)ds, with τ(x, v) = inf{s > 0; x− sv /∈ Ω}.

3.3 Stability of the critical spectrum

In this subsection we deal with the stability of the critical spectrum of U(t). We note
that the latter is described in [20, Theorem 7]. First, we consider

Convex spatial domains

Here we assume that the collision frequency is homogeneous, the non homogeneous case will
be treated hereafter.
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Theorem 3.8. Let p = 2 and let Ω be convex (not necessarily bounded). We assume µ is
such that the affine hyperplanes have zero µ-measure, the collision operator is regular and the
collision frequency σ is space homogeneous. Then the mapping 0 ≤ t 7→ V (t)− U(t) is norm
continuous and consequently σcrit(V (t)) = σcrit(U(t)) for all t ≥ 0.

Proof. The proof follows from Theorem 2.2 and Lemma 3.3. ¥

Remark 3.9. Theorem 3.8 generalizes [20, Theorem 8] and answers positively Problem 2
in [20].

Arbitrary spatial domains

We have used a domination argument to prove the compactness of V (t)−U(t) when Ω is not
convex or the collision frequency σ is not homogeneous. But when we deal with the norm
continuity of 0 ≤ t 7→ V (t) − U(t) it is clear that we cannot invoke a domination argument.
In the following, we take the advantage of the dissipativity of the streaming operator T in
order to remove the convexity assumption on Ω and the homogeneity assumption on σ, in the
particular case where dµ(v) = dv is the Lebesgue measure on RN .

Theorem 3.10. Let p = 2 and let Ω be a (not necessarily convex) subset of RN . We assume
that the collision operator is regular, µ is the Lebesgue measure and the collision frequency can
be approximated in L∞(Ω×V ) by degenerate collision frequencies of the form

∑
i∈I σi

1(x)σi
2(v)

(I finite). Then σcrit(V (t)) = σcrit(U(t)) for all t ≥ 0.

Proof. Since T is dissipative, from Lemma 2.8 and Lemma 3.13 below we get that

‖KR(ν + iγ, T )‖+ ‖R(ν + iγ, T )K‖ → 0 as |γ| → ∞, for all ν > 0.

This implies, by using Theorem 2.2, that σcrit(V (t)) = σcrit(U(t)) for all t ≥ 0. ¥

Remark 3.11. Theorem 3.10 answers, at least for the Lebesgue measure, Problems 1
and 3 in [20] about the relevance of the convexity assumption on Ω and the homogeneity
assumption on σ.

Remark 3.12. For a general (but abstract) criterion to approximate a collision frequency
by a degenerate collision frequencies see [18, Theorem A.4]. We note that this is possible, for
example, if Ω 3 x 7→ σ(x, ·) ∈ L∞(V ) is piecewise continuous.

Lemma 3.13. Under the assumptions of Theorem 3.10,

‖K∗R(ν + iγ, T )K‖ → 0 and ‖KR(ν + iγ, T )K∗‖ → 0 as |γ| → ∞

for all ν > 0.

Proof. First, we note the following continuous dependence of R(ν + iγ, T ) on the collision
frequency. Let T, T̃ be associated with σ, σ̃ ∈ L∞(Ω× V ), respectively. Then

‖R(ν + iγ, T )−R(ν + iγ, T̃ )‖ ≤ Cν‖σ − σ̃‖∞
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for some positive constant depending only on ν. Thus we may assume that σ is of the degen-
erate form, i.e. σ(x, v) =

∑
i∈I σi

1(x)σi
2(v) with I finite. On the other hand, the operators

K∗R(ν + iγ, T )K and KR(ν + iγ, T )K∗, depend linearly and continuously, in the operator
norm topology, on the collision operator K uniformly for γ ∈ R, then, according to Lemma
3.2, it suffices to prove that

‖K1R(ν + iγ, T )K2‖ → 0 as |γ| → ∞,

where Ki, i = 1, 2, has the form

Ki : L2(Ω× V ) 3 ϕ 7→
∫

V

αi(x)fi(v)gi(v′)ϕ(x, v′)dv′ ∈ L2(Ω× V )

with αi ∈ L∞(Ω) and fi, gi ∈ L2(V ). Moreover, by density one may assume that fi and gi

are continuous functions with supports in V ∩ {v; δ ≤ |v| ≤ 1/δ} for some fixed 0 < δ < 1. In
this case, one easily sees that K1R(ν + iγ, T )K2 is decomposable as

K1R(ν + iγ, T )K2 = OQ(γ)P

with
P : L2(Ω× V ) 3 ϕ 7→ α2(x)

∫

V

g2(v)ϕ(x, v)dv ∈ L2(Ω),

O : L2(Ω) 3 ψ 7→ α1(x)f1(v)ψ(x) ∈ L2(Ω× V )

and

Q(γ) : L2(Ω) 3 ϕ 7→
∫

V

τ(x,v)∫

0

e
−t(ν+iγ)−

tR
0

σ(x−sv,v)ds
h(v)ϕ(x− tv)dtdv ∈ L2(Ω),

where h = g1f2. By the change of variable y = x− tv we get

Q(γ)ϕ(x) =
∫

RN

∞∫

0

e
−t(ν+iγ)−

tR
0

σ(x−s x−y
t

, x−y
t

)ds
h
(x− y

t

)
χ(x, x− y)ϕ(y)

dt

tN
dy,

where all functions are extended by zero outside of their domains and

χ(x, v) :=
{

1 if 1 < τ(x, v),
0 otherwise.

Set

Nγ(x, z) =

∞∫

0

e
−t(ν+iγ)−

tR
0

σ(x+z−s x
t
, x

t
)ds

h
(x

t

) dt

tN
.

Then one sees that

|Q(γ)ϕ(x)| ≤
∫

RN

|Nγ(x− y, y)||ϕ(y)|dy

≤
∫

RN

sup
z∈RN

|Nγ(x− y, z)||ϕ(y)|dy

≤ ( sup
z∈RN

|Nγ(·, z)|) ∗ |ϕ(·)|(x),
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so by [4, Theorem IV.15]

‖Q(γ)‖ ≤ ‖ sup
z∈RN

|Nγ(·, z)|‖L1(RN ).

Thus it remains to show

‖ sup
z∈RN

|Nγ(·, z)|‖L1(RN ) → 0 as |γ| → ∞.

First, observe that

Nγ(x, z) =

∞∫

−∞

χ[0,∞[(t)
tN

e−iγte
−tν−t

(P
i∈I σi

2(x
t
)

1R
0

σi
1(x+z−sx)ds

)
h(

x

t
)dt

and that for every x ∈ RN the set

{Sx,z ∈ L1(R); z ∈ RN},

where

Sx,z : t ∈ R 7→ χ[0,∞[(t)
tN

e
−tν−t

P
i∈I σi

2(x
t
)

1R
0

σi
1(x+z−sx)ds

h(
x

t

)
,

is relatively compact in L1(R). Indeed, let (zn)n be a sequence in RN . Pick a subsequence
(znk

)k such that
1∫

0

σi
1(x + znk

− sx)ds → ci
x as k →∞ for all i ∈ I.

By the dominated convergence theorem the sequence (Sx,znk
)k converges, in L1(R), to the

function

t ∈ R 7→ χ[0,∞[(t)
tN

e−tν−t
P

i∈I σi
2(x

t
)ci

xh(
x

t
).

So according to Riemman-Lebesgue’s lemma we get

∞∫

0

e−iγte
−tν−t

1R
0

σ(x+z−sx, x
t
)ds

h(
x

t
)
dt

tN
→ 0 as |γ| → ∞

uniformly for z ∈ RN , i.e.
sup

z∈RN

|Nγ(x, z)| → 0 as |γ| → ∞

for all x. By the dominated convergence theorem again we conclude that

‖ sup
z∈RN

|Nγ(·, z)|‖L1(RN ) → 0 as |γ| → ∞,

which ends the proof. ¥

Remark 3.14. The results of this section can be extended, by density arguments (Lemma
3.2) and interpolation, to Lp spaces (1 < p < ∞).
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3.4 Further Extensions

In neutron transport equations it may happen that the collision operator K is a sum
of several operators. This occurs in nuclear reactor theory for solid moderators, where the
collision operator is a sum of (an incoherent part) Ki and (a coherent part) Kc where Ki

is compact in L2(V ) while Kc is not [5]. It is also the case in [12, 23] where K consists of
three terms: the first, Kc, is that given by (1.10), the second term, Kd, is a singular nilpotent
operator, and the third term, K0, describes the elastic scattering which is ”not compact in
velocity”. On the other hand if, for instance, K ∈ L(L2(V )) is not power compact then
the terms Un(t) are never compact (see [17, Chapter 4]). These facts motivate M. Mokhtar-
Kharroubi to state the following problem ([17, Problem 3, p. 93]): Let K = K1 + K2 be
a collision operator such that K2 is regular. Find (an estimate of) the essential type of the
semigroup (V (t))t≥0 generated by T + K.
Before answering this problem, let us first remark that, for ν large,

K2R(ν + iγ, T + K1)
=

(
K2R(ν + iγ, T )(ν + iγ − T −K1) + K2R(ν + iγ, T )K1

)
R(ν + iγ, T + K1)

= K2R(ν + iγ, T ) + K2R(ν + iγ, T )K1R(ν + iγ, T + K1). (3.5)

Similarly,

R(ν + iγ, T + K1)K2 = R(ν + iγ, T )K2 + R(ν + iγ, T + K1)K1R(ν + iγ, T )K2. (3.6)

Let us denote by (W (t))t≥0 the C0-semigroup generated by T + K1. We have:

Theorem 3.15. Let p = 2 and let K = K1 + K2 be a collision operator such that K2 is
regular.
(a) Let µ be such that the affine hyperplanes have zero µ-measure.
• If Ω is convex and bounded and if the collision frequency is homogenous, then σess(V (t)) =
σess(W (t)) for all t ≥ 0.
• If Ω is convex and if the collision frequency is homogenous, then σcrit(V (t)) = σcrit(W (t))
for all t ≥ 0.
(b) Let µ be the Lebesgue measure, and let the collision frequency be as in Theorem 3.10.
Then σcrit(V (t)) = σcrit(W (t)) for all t ≥ 0.

Proof. We start with the second part of (a). Using Lemma 3.3, (3.5) and (3.6), we get

‖K2R(ν + iγ, T + K1)‖+ ‖R(ν + iγ, T + K1)K2‖ → 0 as |γ| → ∞,

which proves, by invoking Theorem 2.2, the second part of (a). Moreover, if Ω is bounded,
then according to [17, Theorem 4.1, p. 57] K2R(ν + iγ, T ) is compact, and hence by (3.5),
K2R(ν + iγ, T + K1) is compact too. Theorem 2.3 ends then the proof of the first part of
(a). Since T is dissipative, by Lemma 2.8 and Lemma 3.13 we have

‖K2R(ν + iγ, T )‖+ ‖R(ν + iγ, T )K2‖ → 0 as |γ| → ∞ for all ν > 0.

Then by (3.5) and (3.6)

‖K2R(ν + iγ, T + K1)‖+ ‖R(ν + iγ, T + K1)K2‖ → 0 as |γ| → ∞ for all ν > 0.

Finally, Theorem 2.2 ends the proof of (b). ¥
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Remark 3.16. If Ω is convex and bounded, Theorem 3.15 provides, in particular, an
estimate for the essential type of (V (t))t≥0: ωess(V (·)) = ωess(W (·)). Actually, if K1 is
positive in the lattice sense, then by the L. Weis’s result [32] on the identity of the type of
positive semigroups on Lp spaces and the spectral bound of its generators we have ωess(V (·)) ≤
s(T + K1) (the spectral bound of T + K1). The latter can be an equality (see [23]).

Remark 3.17. We point out that Theorem 3.15 holds regardless of the nature of the oper-
ator K1. This shows how much the resolvent approach can appear powerful for dealing with
the stability of the essential and critical spectra, especially when the unperturbed semigroup
is not explicit.

Remark 3.18. By interpolation arguments, Theorem 3.15 remains true in Lp-space (1 <
p < ∞) if K2 is regular and if K1 ∈

⋂
q≥1 L(Lq(Ω × V )) or it can be approximated by such

operators. See [23] for collision operators satisfying this property.
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